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ABSTRACT This paper presents the first automatic scheme to allocate local (stack) data in recursive
functions to scratch-pad memory (SPM) in embedded systems.A scratch-pad is a fast directly addressed
compiler-managed SRAM memory that replaces the hardware-managed cache. It is motivated by its signifi-
cantly lower access time, energy consumption, real-time bounds, area and overall runtime. Existing compiler
methods for allocating data to scratch-pad are able to placeonly code, global, heap and non-recursive stack
data in scratch-pad memory; stack data for recursive functions is allocated entirely in DRAM, resulting in
poor performance.

In this paper we present a dynamic yet compiler-directed allocation method for recursive function stack
data that for the first time, is able to place a portion of recursive stack data in scratch-pad. It has almost
no software-caching overhead, and is able to move recursivefunction data back and forth between scratch-
pad and DRAM to better track the program’s locality characteristics. With our method, all code, global,
stack and heap variables can share the same scratch-pad. When compared to placing all recursive function
data in DRAM and all other variables in scratch-pad, our results show that our method reduces the average
runtime of our benchmarks by 29.3%, and the average power consumption by 31.1%, for the same size of
scratch-pad fixed at 5% of total data size. Furthermore, significant savings were observed when comparing
our method against cache-based alternatives for SPM allocation. Finally, we show results that analyze the
effects of profile variation on our allocation approach and present a modified version of our method which
minimizes variation for profile-based allocations.

1 Introduction

In embedded systems, program data is usually stored in one oftwo kinds of writable memories – SRAM

or DRAM (Static or Dynamic Random-Access Memories). SRAM isfast but expensive while DRAM is

slower (by a factor of 10 to 100) but less expensive (by a factor of 20 or more). To combine their advantages,

often a large DRAM is used to build low-cost capacity, and then a small SRAM is added for efficient access

to frequently used data.

In desktops, the usual approach to adding SRAM is to configure it as a hardware cache. The cache

dynamically stores a subset of the frequently used data. Caches have been a success for desktops – a trend

that is likely to continue in the future. One reason for theirsuccess is that code compiled for caches is

portable to different sizes of cache; on the other hand, codecompiled for scratch-pad is usually customized

for one size of scratch-pad. Binary portability is valuablefor desktops, where independently distributed

binaries must work on any cache size. In embedded systems, however, the software is usually considered

1



part of the co-design of the system: it resides in ROM or another permanent storage medium, and cannot

be easily changed. Thus, there is really no harm to the binaries being customized to one memory size, as

required by scratch pad. Source code is still portable, however: re-compilation with a different memory

size is automatically possible in our framework. This is nota problem, as it is already standard practice to

re-compile for better customization when a platform is changed or upgraded.

For embedded systems, the serious overheads of caches are less defensible. Caches incur a significant

penalty in area cost, energy, hit latency and real-time guarantees. All of these, other than hit latency, are

more important for embedded systems than desktops. A detailed study [5] compares caches with scratch

pad. Their results are definitive: a scratch pad has 34% smaller area and 40% lower power consumption

than a cache of the same capacity. These savings are significant since the on-chip cache typically consumes

25-50% of the processor’s area and energy consumption, a fraction that is increasing with time [5]. Even

more surprising, the run-time cycle count they measured was18% better with a scratch pad using a simple

static knapsack-based [5] allocation algorithm, comparedto a cache. Defying conventional wisdom, they

found absolutely no advantage to using a cache, even in high-end embedded systems in which performance

is important. With the superior dynamic allocation schemesproposed here, the run-time improvement will

be larger. Given the power, cost, performance and real time advantages of scratch-pad, and no advantages of

cache, it is not surprising that scratch-pads are the most common form of SRAM in embedded CPUs today

(eg: [1, 7, 26, 27, 35]), ahead of caches. Trends in recent embedded designs indicate that the dominance of

scratch-pad will likely consolidate further in the future [5,29], for regular as well as network processors.

Although many embedded processors with scratch-pad exist,compiling program data to effectively

use the scratch-pad has been a challenge. Recent advances have made much progress in compilingcode,

global, heap and non-recursive stack variablesinto scratch-pad memory. Two classes of compiler methods

for allocating these objects to scratch-pad exist. First,static allocation methods are those in which the

allocation does not change at run-time; these include [3, 4,15, 31, 32] and others not listed here. In such

methods, the compiler places the most frequently used variables, as revealed by profiling, in scratch pad.

Placing a portion of the stack variables in scratch-pad is not easy – [4] is the first method to solve this

difficulty by partitioning the stack into two stacks, one forscratch-pad and one for DRAM. Second, more
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recently proposeddynamicmethods improve upon static methods by allowing variables to be moved at run-

time [10, 19, 34, 36, 39]. Being able to move variables enables tailoring the allocation to each region in the

program rather than having a fixed allocation as in a static method. Dynamic methods aim to keep variables

that are frequently accessed in a region in scratch-pad during the execution of that region.

Recursive functions Recursive functions are widely used for large classes of computational problems.

They are the most natural and efficient way of programming many algorithms, including those that use

graphs, trees, and hierarchical databases. Virtually all graph or tree-traversal algorithms are recursive. In ad-

dition, some algorithms using arrays, such as quicksort, are also recursive. Recursive functions are common

in many embedded domains, include communications, networking, planning, control, and transportation.

Indeed, we had no difficulty finding embedded benchmarks withrecursive functions. Moreover, in many

of these benchmarks, recursive functions dominated the run-time, especially after other optimizations had

been done.

Unfortunately, even the most robust of the published SPM allocation schemes lacks support for recursive

function stack data. This is not surprising since all existing allocation methods work by finding frequently

used variables and placing them into SPM until filled.The allocator must know both the size of each allo-

cated variable as well as the total amount of SPM available.Published research has dealt almost entirely

with program objects having a fixed size at compile-time and run-time (code, global and stack data), al-

though one recent publication does present a method for heapdata as well.For recursive functions, the

stack frame size is fixed at compile-time but not the total number of frames allocated at runtime. Without

knowing their total size, existing SPM allocation methods must leave recursive stack data in main memory.

Allocating recursive stack data to main memory, which is much slower than SRAM, can cause very poor

performance. The importance of allocating recursive stackdata rises dramatically for programs making sig-

nificant use of recursive functions, even more so when all other data has been optimized for SPM placement.

Also, as embedded platforms become more complex, so will their software, increasing the likelihood that

dynamic storage methods such as recursive stack data will beused more heavily. Finally, automatic meth-

ods for SPM placement exist only in the form of hardware caches, which have higher power and execution

costs when compared against a good compiler-directed SPM allocation scheme, particularly for dynamically
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allocated data exhibiting randomized accesses.

This paper presents a new approach to handling recursive stack data for allocation purposes. We first

take advantage of the fact that a recursive function has a fixed size stack frame known at compile-time. Our

approach is to examine the runtime behavior of individual stack frames at different depths corresponding to

the discrete stack frames. Using this information, we placethe most commonly used depths, as detected by

profiling, into SPM and all other depths are left in main memory. Finally, we also present a method to reduce

profile-dependence for allocation decisions, crucial whendealing with dynamically allocated program data.

2 Related work

Among existing work, static methods to allocate data to SPM include [3–5,15,28,31,32]. Static methods

are those in which the contents of SPM do not change at run-time. Some of these [5, 28, 31] allocate only

global variables to SPM, while others [3,4,15,32] can allocate both global and non-recursive stack variables

to SPM. Other static methods [33,40] can allocate both code and data to SPM. These static allocation meth-

ods either use greedy strategies to find an efficient solution, or model the problem as a knapsack problem or

an integer-linear programming problem (ILP) to find an optimal solution.

Another approach to SPM allocation are dynamic methods; in such methods the contents of the SPM

can change at run-time [10, 12, 24, 25, 33, 34, 36, 38]. The method in [24] can place global and stack arrays

while the method in [33] can place global and code. The methodin [36] allocates global and stack data

to SPM dynamically, with explicit compiler-inserted copying code that copies data between slow memory

and SPM when profitable. All dynamic data movement decisionsare made at compile-time based on profile

information. The method by Verma et. al. in [38] is a dynamic method that allocates code as well as global

and stack data. It uses an ILP formulation for deriving an allocation. The work in [34] also allocates code,

global and stack data, but using a polynomial-time heuristic. Finally, the method in [10] is the first dynamic

SPM allocation method to place a portion of the heap data in the SPM, making it the most complete to date

among the SPM allocation schemes by handling code, global, heap and non-recursive stack data.

Recursive functions None of the SPM allocation publications in the literature discuss recursive stack han-

dling; instead they leave such data in main memory. However afew techniques aim to convert recursive
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functions into non-recursive functions. This is best seen in the tail recursion (or tail-end recursion) opti-

mization [6, 8]. In tail-recursive functions, stack framesat different depths can share the same space in

memory since they have non-overlapping lifetimes. Since their total stack size is now bounded, scratch-pad

allocation is easy. However, most modern compilers such as GCC (also our experimental platform) already

implement tail recursion optimizations. Hence all the results present in this paper show benefits beyond

those that can be achieved by tail recursive optimizations.

Transformation methods have also been studied that convertlimited classes of recursive functions into

other forms, such as loops [13]. Another method performs procedure inlining to convert mutual recursion

to direct recursion [20]. This allows use of optimization techniques that are most easily applied to directly

recursive procedures. A noteworthy publication presents amanual method for transformation of general

recursive cycles into iteration [22]. However, their analyses and measurements show that some previously

considered optimizations can actually result in slower programs. The fact is that there are many algorithms

in computer science which are most elegantly and efficientlyexpressed as recursive functions and not au-

tomatically or beneficially optimizable by existing methods. Indeed, as far as we know, none of the above

techniques have been implemented in commercial or widely-used open-source compilers, despite being

available for decades.

3 Recursive function stack allocation

In order to consider recursive stack data for allocation to scratch-pad memory (SPM), our approach is

to treat each possible recursive function instance called into creation at runtime as an individual variable

representing that particular invocation. For this approach, we set the unit size for recursive function stack

allocation to be the entire stack frame for that function. The total stack frame size (allocated each time the

procedure is called) is fixed at compile-time for functions in written in C. Of course, the trivial case when a

recursive function does not consume any stack space does notneed to be considered for SPM placement.

We choose to allocate recursive stack data to SPM at the granularity of an entire stack frame for several

reasons. First, some architectures (like ARM) may not allocate the entire frame upon function entry. These

platforms instead grow the stack as needed when execution reaches certain points in the function code. For
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safety, we conservatively bound the size of a recursive function instance to its total maximum frame size and

not to any of the possibly smaller sizes seen at runtime during different visits to the function1. Second, by

not attempting to handle individual variables within a stack frame, we greatly reduce the bookkeeping and

code-insertion overheads required by our method to controlthe allocation of individual instances. Finally,

most recursive functions tend to contain a relatively smallnumber of stack variables and consume small

amounts of space per frame as compared to non-recursive functions, making the stack frame an attractive

abstraction without significant loss of fine-grain control.

To implement our approach to allocating recursive functionstack data, we have developed a complete

compiler-directed analysis and allocation framework based on the best existing dynamic SPM allocation

scheme for heap data from [10]. This publication describes aheuristic approach to dynamic placement of

code, global, stack (non-recursive) and heap data into SPM for embedded systems. Our method can be

integrated directly to such a scheme using the details provided in the next few paragraphs.

Dynamic SPM allocation framework Since our overall SPM allocation framework is dynamic – in that

the contents of SPM are different in different regions of theprogram – we need to define what our choice

of regions is. Our SPM allocation strategy has a fixed allocation inside each region, although the allocation

can change at region boundaries. Since our choice of regionsis mostly orthogonal to our allocation strategy

for recursive frames, we only briefly outline our choice of regions here; the region definition is borrowed

from our earlier work in [34]. Regions are defined to begin at (i) the start of each procedure; and (ii) just

before the start, and at the end of every loop (even inner loops of nested loops). A region ends when the

next one begins. An example of how code is partitioned into regions is in Figure 1. Other choice of regions

are possible, but we have not explored them since our experiments have found the above choice to perform

well.

For code, global and stack our earlier work has found dynamicallocation to be superior to static alloca-

tion [34]. However within recursive functions, for reasonsmentioned above, each recursive stack frame goes

to a single memory (although different frames go to different regions.) Hence inside recursive functions,

1For this same reason, we do not set the granularity down to theindividual variable level as some variables may not appear in
all invocations at runtime, severely complicating safe dynamic allocation decisions along all possible program paths

6



int foo()  {   

code 1

code 2

loop 1  {

code3

loop 2 

}

code 4

code5

}

Region 1

Region 2

Region 3

Region 4

Figure 1: A methodfoo() is divided into code regions
there is little benefit do dividing into regions, and it wouldalso complicate code generation.For this reason,

each recursive function is always considered a single region, regardless of any loops inside it. Of course,

recursive functions are in different regions from any non-recursive functions that call them, or that they call.

Program Profiling When attempting to allocate recursive stack data, it is important to gather both static

and dynamic profile information on the program being optimized. Static profile information can be obtained

from a compiler by estimating the frequency of code. For example, most register allocators estimate the

iteration count of all loops as a fixed value of 10. Nested loops are estimated with a cumulative iteration

count of10i for loops at nesting depthi. In contrast, dynamic profile information can be obtained through

instrumented execution of the program binary using appropriate program inputs. Very simple programs that

do not take inputs will have an accurate program representation from only the static profile, but complex pro-

grams that are input-dependent will have incomplete program behavior information without a large amount

of dynamic profile data. When attempting to optimize dynamically allocated variables such as recursive

function stack objects, dynamic profile information becomes much more important to obtain a clear picture

of probable program behavior at runtime.

To illustrate dynamic profiling useful for allocating recursive stack data, we present a simple example of

a recursive function performing an in-order visitation of data structure nodes forming a graph. Figure 2(a)

shows pseudocode which implements the recursive function.This function simply visits each node in a

graph before visiting each of its children. Figure 2(b) shows the static profile frequency table (PFT) for the

function including extra variable information for this function. Figure 2(c) shows the dynamic PFT for same

function for a program input where the function recursed to amaximum depth of three invocations. This last

figure shows our approach to dealing with recursive functions and their stack variables. Our method treats

each possible runtime depth as a separate variable for profiling and allocation purposes, each with its own
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preorder(node v) {
visit(v);
for each child w of v

preorder(w); }

Name     Size   Accesses

Preorder    20          ?

Name Size     Accesses

Preorder depth 1 stack  20           100

Preorder depth 2 stack 20            60

Preorder depth 3 stack 20            40

(a) Code

(b) Static Profile

(c) Dynamic Profile

Figure 2: Example recursive function showing (a) function code, (b) static profile, (c) dynamic profile.

size, access and lifetime information.

Deciding Allocations Before proceeding further, let us consider that what we really would like: we would

like to specify exactly the recursive depths for which stackframes should be allocated. For example in

figure 2, if we only had space for two recursive stack frames, we would choose those at depths 1 and 2,

since those had the greatest dynamic frequency of access. Another example of more frequent access at the

root of the recursive tree is presented in Figure 3. This figure shows a tree data structure, and how accesses

are more frequent at root nodes. Recursive functions often have this behavior in that the first few frames are

more frequent.However, we have also found programs with the exact oppositebehavior, when the last few

frames are more frequent; or where some intermediate-depthframes are the most frequent. To distinguish

these cases, we need dynamic profiling as described above.

900

500 400

200 200 100

Figure 3: Binary Tree with each node marked by its access frequency for use by allocation analysis.

As an example of the behavior that may result, consider that for some program, depths 3,4 and 5 may be

most frequently accessed for some recursive function, and our SPM allocator should preferentially allocate

them to SPM. All other depths (1,2,6,7,...) should be allocated to DRAM. Our code generator should be

sophisticated enough to generate code to implement this depth-specific behavior. Note that it is incorrect to

simply allocate all depths to SPM, since the total SPM size needed for that is unbounded at compile-time.
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No existing SPM allocation method is able to distinguish between recursive depths or allocate recursive

functions to SPM.

What we need to implement the above desired allocation is a code generation method that can create

efficient code to implement the above. At first glance it seemsthat unwinding the recursive function by

repeatedly inlining it might help with code generation, since it provides individual copies corresponding to

each invocation depth of the function, essentially cloningthe function into separate related functions. A

drawback with this approach is that it is hard to determine how many times the function should be inlined

in itself since the theoretical maximum is unbounded. Moreover even limited inlining increases code size.

For these reasons, our approach never does inlining or cloning. Instead it takes advantage of the behavior

observed in applications using recursive functions to logically split them into individual instances which can

each be allocated separately and safely.

The key to segmenting a recursive function into its individual invocation instances is to take advantage

of its allocation behavior at runtime. Recursive function stack frames must be de-allocated strictly in reverse

order of their creation, so each stack frame is de-allocatedonce that invocation has exited and returned to its

parent function. We take advantage of this restriction to make better guarantees on predicting the accesses

to different instances of recursive variables and correlation of different depths to access frequency of those

variables. Through judicious code insertion, it is possible for a compiler to treat each possible depth of

invocation a recursive function may reach as a logically separate function, allowing individual stack frame

control for allocation to a chosen memory area.

Code generation To actually make use of the notion of separate recursive function instances for allocation,

proper code generation is essential. Our method begins by inserting a few lines of code at the entry and exit

points of each recursive function which are used to increment and decrement adepth counter, respectively,

for each optimized function body. This counter tracks the current invocation depth of that function at runtime

and serves as a way to virtualize a recursive function into separate instances.

The entry point into the function is modified so that the depthcounter is checked upon entry and used

to decide if the stack pointer should be updated to an SPM location or left at the current program value for

main memory.The most general check that is currently supported is that the depth counter for a certain
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contiguous range of its values should be allocated to SPM.For example, if depths 3, 4 and 5 are to be

allocated to SPM, the check is(depth counter ≥ 3) or (depth counter ≤ 5). As another

example, if depths 1, 2 and 3 are to be allocated to SPM, the check isdepth counter ≤ 3. Although

it is possible that the most frequently used depths are not all contiguous, we found in our experiments that

is rare, hence our current implementation only supports a single contiguous range. When such a rare case is

found, we choose the single range of depth counter values with the greatest cumulative frequency. Checks

for multiple contiguous ranges can be supported, but the checking overhead will increase, so it is not clear

they would be a good idea.

Each optimized invocation of the function must also reserveenough space to store its stack pointer

address for use when swapping the current function in and outof SPM, if dynamic movement of recursive

stack frames is desired.

Mutual recursion When a function calls itself, that is direct recursion. Occasionally functions do not

call themselves, but are part of a recursive cycle of functions in the program’s call graph. For example,

function A() may call B(), which in turn may callA(). Recursive cycles which span more than a single

function are rare, and our own large benchmark set does not contain any examples of this type of recursion.

However, to support the full range of possible programs, we have implemented support for multi-function

recursive regions. Our solution is to increment the depth counter at the root function in the recursive cycle

– this is the function that is called from non-recursive procedures. Checks are inserted at each function in

the recursive cycle, as usual. If there is more than one root function in the recursive cycle, then the depth

counter increment can be placed at any one of the roots.

3.1 Profile sensitivity

Profile dependence is a problem inherent to any memory allocation scheme which bases its decisions

on program profiles, whether they be compile-time(static) or runtime(dynamic) profiles. As individual pro-

grams become more complex, they also tend to exhibit a much higher degree of input profile dependence

in terms of execution and data access patterns. This is particularly true for dynamically allocated data such

as heap or recursive stack objects. For example, the most frequently accessed recursive depths could be
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different for a certain input data set compared to the representative input data set used for profiling. For such

profile sensitive applications, this dependence can cause poor results with bad allocation predictions.

For some applications profile sensitivity is not a problem, as their allocation and execution patterns vary

minutely when different program inputs are applied. For other applications however, there is an intrinsic

dependence between input data and data allocated and accessed at runtime. Methods for optimizing dy-

namically allocated data must rely on dynamic profiling of the program using typical inputs. When basing

general decisions on a limited set of profiles, it is vitally important to reduce the sensitivity of the program

allocation scheme program profiles used. Comprehensive analysis methods greatly increase the chance that

a chosen allocation will work well for the majority of expected program inputs, particularly when dynami-

cally allocated memory accounts for a sizable percentage oftotal data accesses. Our approach to reducing

profile sensitivity lies in accounting for both the static program profile and as many dynamic profiles as can

be obtained from representative inputs.

We take the following steps to improve the robustness of performance improvements across data sets.

First we create the profile frequency tables (PFTs) for each region for each program input, containing the

code frequency of that region, as well as the profile frequency of variables accessed in that region. For

recursive functions (which always contain only one region), the PFT should contain one row per stack

depth. An example of the complete PFT for the recursive function region in figure 2(a) is in figure 4. This

is an extended version of the PFT in figure 2(c), but containing extra rows for the code block, and for a

global variable G accessed in the region (not shown in the code). The second-to-last column of figure 4

shows the access frequencies for an extra data set (numberedinput data set 2). The last column shows the

average access frequency across data sets 1 and 2 for each variable. This average is used in the calculation

of the depths to be allocated to SPM, instead of the frequencies from only one data set. This averaging

mechanism is a good way to prevent the profile data from being misled by extremes in input data sets. We

have found that this averaging improves the robustness of the performance gain across data sets by avoiding

over-specialization for any one data set.
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Variable Size Input Input Average
Name (bytes) data set 1 data set 2 Frequency

Preorder Code 28 200 180 190
Preorder depth 1 stack 20 100 80 90
Preorder depth 2 stack 20 60 66 63
Preorder depth 3 stack 20 40 34 37
Global G 4 20 18 19

Figure 4: Dynamic profile frequency table for the recursive program region in figure 2(a). This is a more
complete version of figure 2(c) with additional variables and an additional data set 2.

4 Results

This section presents the results obtained by comparing ourallocation method for recursive function

stack data against the usual practice of placing such data inDRAM, for a variety of compiler and architecture

configurations. For comparison, since there exists no otherautomatic compiler methods to handle recursive

function stack data, we use the most general existing compiler-directed SPM allocation scheme for code,

global, heap and non-recursive stack data from [10]. The scheme in [10] is chosen for comparison since it

is one of the only schemes in the literature that can also handle heap data. Its handling of code, global and

non-recursive stack data is based on the dynamic method in [34]. Hence the comparison method represents

the state-of-the-art method for SPM allocation today.

Our method for allocation of recursive stack data is built ontop of the comparison scheme and augments

its capabilities. Since our method and the comparison are implemented in the same compiler and simulation

environment, the comparison is fair. All applications are compiled automatically using full optimization lev-

els without requiring the user to specify anything other than the SPM space available on the target platform.

An external DRAM with 20-cycle latency, an external Flash memory of 20-cycle latency, and an internal

SPM (SRAM) with 1-cycle latency is simulated in the default configuration. Flash is used to store code;

DRAM and SPM store program data. The default configuration has an SPM size which is 5% of the total

data size of the program. The total data size for a program is the maximum memory occupancy during the

course of its execution and not simply a sum of the total data objects allocated throughout its lifetime. The

DRAM size, of course, is assumed to be large enough to hold allprogram data.

Methodology Details Our compiler-based allocation method is implemented on theGNU Compiler Col-

lection(GCC) v4.1 cross-compiler [11] released by CodeSourcery and targeting the ARM v5e embedded
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Anagram Bh Bisort Cfrac Epic Health Mst Patricia Perimete Qbsort Treead Treesort Trie Tsp Voronoi Yacr2

Benchmark Source PtrDist Olden Olden MallocBenc MediaBenc Olden Olden MiBench Olden McCat Suit Olden LLVM  Suit McCat Suit Olden Olden PtrDist

% Data that is Rec. Stack 0.08 0.93 0.57 0.20 0.03 0.04 0 0.02 0.06 0.04 0.03 0.02 0.18 0.06 0.05 0.03

% Data Access by Rec.Stack 0.07 58.20 66.08 1.02 0.15 74.14 1.07 2.71 78.18 15.64 97.70 56.34 68.79 50.89 8.86 12.48

% Rec. Access to SPM 100 96.78 41.87 0 100 99.75 100 97.03 99.54 0 100 100 92.21 28.68 83.58 98.90

# Unique Rec. Stack Depths 1 18 22 5 32 11 1 6 24 13 21 15 106 14 11 45

Figure 5:Benchmark Statistics Table.

processor family [16]. Execution results are obtained froman ARM simulator included as part of the Gnu

Debugger (GDB) v6.2 software, augmented to accurately model its execution and power characteristics.

The energy consumed by programs is estimated using the instruction-level power model proposed in [21]

using ARM specific information from [30]. To model SPM, we have adopted an approach similar to those

in [5], [33] and [18], in which we simplify the CACTI [9] estimation model to match an SRAM mem-

ory module. We have also incorporated the DRAM power estimation model provided by MICRON [17]

for their external DDR Synchronous DRAM chip [23]. All devices were simulated at 200MHz with an

operating voltage of 1.5V.

Benchmark Suite For our experiments, we gathered a large number of freely available applications suited

to the embedded domain. All applications make use of code, global, stack, heap and recursive stack data

and have not been modified. Figure 5 shows important statistics from each program. Each program contains

between 1-100 unique recursive stack instances. For the set, recursive stack data makes up less than 1%

of the data size, yet recursive stack accesses make up more than 50% of total accesses for fully half of the

programs. At only 5% SPM, our method is able to place more than90% of all recursive stack accesses

into SPM for 70% of the benchmarks. As with any allocation method, improvement is proportionate to the

contribution of the optimized variable to total program runtime.

Runtime and energy gain Figure 6 compares the normalized runtime from our method versus from the

existing practice of placing all recursive stack data in DRAM. Without our method, this SRAM is used only

by code, global, heap and non-recursive stack data; with ourmethod the SRAM is shared by all types of

variables.The figure shows that the average runtime reduces by 29.3% by using our method for the exact

same architecture. The large average improvement shows the potential of our method to reduce runtime of

recursive applications beyond today’s state-of-the-art.
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Figure 6:Normalized runtime from using our method versus allocatingheap data in DRAM.

In general, runtime and energy improvements from allocation of recursive stack data to SPM are propor-

tional to the percentage of data accesses made to recursive data, and inversely proportional to the percentage

of the program data size consumed by recursive stack variables. Applications with a small percentage of

accesses going to recursive data will not benefit greatly from our scheme, and can be seen in the perfor-

mance of Anagram, Cfrac, Epic, MST and Patricia. Other applications in our set are almost dominated by

recursive functions and more than half of all data accesses are made to recursive stack frame. This is the

case in Bh, Bisort, Health, Perimeter, Treeadd, Treesort, Trie and Tsp. Some applications may have high

percentages of recursive stack accesses, but cannot be easily placed at 5% spm due to allocation pressure

from more important code and other variables at limited SPM sizes. This is the case in Qbsort, where most

recursive data is placed at 10% SPM and larger sizes. Yacr is also interesting in that the allocation of re-

cursive data is done statically and reduces the transfer costs incurred by non-recursive functions allocated

by the baseline method. Other programs with modest amounts of recursive stack accesses will show more

modest improvements in runtime, such as Voronoi.

Energy gain Figure 7 compares the energy consumption of programs using our method versus placing

recursive stack data in DRAM. The figure showsan average reduction of 31.1% in energy consumption

using our method. This result demonstrates that our approach has the potential to not only significantly

improve runtime, but also energy consumption. While our method primarily seeks to reduce runtime, this

corresponds with a proportionate reduction in the energy consumption of the system for applications in our

experiments. The energy reduction from SPM allocation for two reasons: because SRAM cells take less

energy to access than DRAM cells; but much more importantly,the latency saving with SRAM means the
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Figure 7:Normalized energy consumption comparing our method against the baseline.
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Figure 8:Percentage of recursive stack accesses made to DRAM.

processor pipeline is stalled for less time, saving on processor idle-cycle energy, which is very significant.

Reduction in recursive stack DRAM accesses Figure 8 shows the percentage of memory accesses to

recursive stack data going to DRAM after applying our method. In this figure, any applications without a

bar indicate that our method was able to allocate all accessed recursive stack variables into an SPM of 5%

data size. The number of DRAM accesses is sometimes increased by the DRAM-to-SPM copying code at

the beginning of dynamic regions, but is reduced much more bythe increased locality afforded by SPM.

Considering both effects, the average net reduction acrossbenchmarks is a significant 77.4% reduction in

DRAM accesses for an SPM size that is only 5% of the total data size. Analyzing the results shows that our

method was able to place many important recursive stack variables into SRAM without involving transfers,

explaining the high reduction in DRAM accesses for many benchmarks. This was somtimes correlated with

a small increase in transfers for less important variables,which were evicted to make room for the more

frequently accessed recursive stack variables.

Effect of varying SPM size Figure 9 shows the effect of increasing SRAM size on the percentage gain

in runtime from our method. The SRAM size is expressed as the percentage of the total data size for the

application. The average runtime gain from our method varies from 29.3% to 39.5%, when the scratch-

15



0
10
20
30
40
50
60
70
80
90

100

A
nag

ra
m B

h

B
is

ort

C
fr
ac

Epic

H
ea

lth M
st

Pat
ric

ia

Per
im

et
er

Q
bSort

Tre
eA

dd

Tre
eS

ort
Trie

TSP

Voro
noi

Yac
r2

A
VER

A
G

E

R
u

n
ti

m
e

 G
a

in
 %

 5% SPM

 10% SPM

 15% SPM

 20% SPM

 25% SPM

Figure 9:Effect of varying SPM size on runtime improvement.

pad size percentage is varied from 5% to 25%. From this we see that increasing the SRAM space beyond

5% gives only a relatively small additional benefit on average. This is because only a small fraction of

the program data is frequently used. A similar effect is seenfor caches: a very large cache does not yield

much better performance than a moderately sized cache [14].We also observed a reduction in energy

consumption ranging from 31.1% to 43.5% when spm size is varied (not shown). The results from this

experiment reinforce the effectiveness of our technique for a range of SPM sizes in embedded platforms.

5 Comparison with caches

This section compares the performance of our method for scratch-pad memories (SPM) versus alterna-

tive architectures using either cache memory alone, SPM alone or cache and SPM together. It is important to

note that our method is useful regardless of this comparisonbecause there are a great number of embedded

architectures which have SPM and DRAM, but have no data cache. These architectures are popular because

SPMs are simple to design and verify, and provide better real-time guarantees for global and stack data [41],

power consumption, and cost [2,5,33,38] compared to caches. Nevertheless, it is interesting to see how our

method compares against processors containing caches.

Our dynamic SPM allocation method shares similarities witha cache memory design but also has some

important differences. Like caches our method gives preference to more frequently accessed variables by

allocating them more space in SPM. One advantage of our method is that it avoids copying infrequently

used data to fast memory; a cache copies in infrequent data when accessed, possibly evicting frequent data.

One downside of our method is that a cache retains the used subset of recursive stack variables in SRAM,
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while our method retains a fixed subset.

We compare three architectures (i) an SPM-only architecture; (ii) a cache-only architecture; and (iii) an

architecture with both SPM and cache of equal area. To ensurea fair comparison the total silicon area of fast

memory (SPM or cache) is equal in all three architectures androughly equal to the silicon area of the SPM

in our main results section (which holds 5% of the memory footprint for each benchmark). Since cache must

be a power of two in size and Cacti has a minimum line size of 8 bytes, the sizes of caches are not infinitely

adjustable. To overcome this difficulty we first fix the size ofcache whose SPM-equivalent in area holds

the nearest to 5% of the data size. Then an SPM of the same area is chosen; this is easier since SPM sizes

are less constrained. For an SPM and cache of equal area the cache has lower data capacity because of the

area overhead of tags and other control circuitry. Area and energy estimates for cache and SPM are obtained

from Cacti [9,42]. The unified cache simulated is direct-mapped (better hit rate for very small cache sizes),

has a line size of 8 bytes (minimum supported by Cacti), and isin 0.5 micron technology. The SPM is of the

same technology but we remove the tag memory array, tag column multiplexers, tag sense amplifiers and

tag output drivers in Cacti that are not needed for SPM. The Dinero cache simulator [37] is used to obtain

run-time results; it is combined with Cacti’s energy estimates per access to yield the energy results.

Figure 10 shows the normalized run-times for different architecture and compiler pairs, obtained for

all benchmarks. The first bar is without our recursive stack allocation methods for the SPM-only design,

against which the other bars are normalized. The second bar shows the runtime for the SPM-only design

when we also apply our recursive stack allocation method. The third and fourth bars are similar to the first

and second, except that for these two we have a SPM and cache available on the same platform. The third

bar shows the results when we allocate code, global, heap andnon-recursive stack objects to SPM and let

the cache handle all recursive stack accesses. With a cachedDRAM present, both the transfers required for

our methods as well as standard DRAM memory accesses are accelerated through the cache. The fourth bar

corresponds to the case when we apply our full SPM allocationscheme to all data objects, and let the cache

handle all DRAM accesses made, again improving transfers and accesses to DRAM. The fifth and final bar

is for the cache only architecture where all data resides in DRAM and is accessed through the cache only.

From the results shown in figure 10, we see that the cache-onlyapproach performs significantly worse
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Figure 10:Normalized run-times for architectures containing different combinations of SPM and cache.
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Figure 11:Normalized energy usage averaged across all benchmarks fordifferent architecture/compiler pairs.

than any of the other methods on average. This correlates with our results from previous work on heap

data allocation, where we found that very small caches perform very poorly for programs that make heavy

use of dynamically allocated data, usually causing ”‘cachethrashing”’ at runtime. The scenarios where

our method was applied on the Cache + SPM platform performed better than the cache-only scenario, but

failed to reach the performance of the SPM-only hardware platform using a compiler-directed dynamic

allocation scheme. Finally, the scenario where our allocation scheme is applied to an SPM-only platform

performed the best with a 32.6% improvement in runtime compared to the baseline, and a remarkable 72.1%

improvement on average over the cache-only architecture, which itself performed 40.45% worse than the

baseline. Figure 11 shows the normalized energy consumption for the same configurations as in figure 10,

and tracks the execution results.

It is interesting to analyze the strengths and weaknesses ofour method versus caches in the light of

these results. From careful analysis of individual benchmark results, we have found that in many cases,

caches simply do not perform well for dynamically allocatedprogram data, particularly at small sizes where
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cache conflicts are more common. Comparing the results of theSPM + cache scenarios, they show that

caches generally have a much harder time with recursive stack data (and heap) than with non-recursive stack

and global data. The most common use of recursive functions in applications is for processing of dynamic

data structures such as lists, trees and graphs. Dynamic andrecursive traversal of such data structures is

often unlocalized with pointer reference chains tending toaccess non-sequential memory locations; both are

problematic for caches. Caches, on the other hand, perform best by localizing sequential memory accesses

from applications such as a media encoders and are also able to localize accesses to variables too large to

place in SPM. The cache scenarios also tended to make uselesscache transfers for data which our method

left in main memory. We found that a great deal of program datashould always remain in main memory, as

transferring it in and out for only a few accesses is seriously detrimental to efficiency.

Furthermore, when the runtime stack for a recursive function is viewed as a stacked memory array,

most recursive functions also tend to make most of their memory accesses at either the deepest or shallowest

levels of recursion. Our method is able to select which invocations of a recursive function are placed in SPM

and allowed to evict other variables. Caches, on the other hand, must transfer a cache line from DRAM to

SRAM for every access miss incurred. Often in recursive functions, the entire recursive stack frame will be

loaded into SRAM, evicting more useful data and deteriorating the performance of cache-based systems.

6 Profile sensitivity

Having shown that are method is able to analyze and optimize an application for a given input set, we

also wish to see how well our method performs on a nonprofiled input set. We would also like to evaluate the

performance of our profile averaging pass for reducing profile sensitivity. Because we are dealing with two

very different program inputs, each with its own data size and runtime characteristics, for these experiments

we fix the SPM size to be 5% of the larger data size for a fair comparison. All other experiments in this

paper are based on input A. Other experiments (not shown) based on input B showed some fluctuations in

results for the applications, but on average achieved runtime and energy savings within 2% of those from

input A.

Figure 12 shows the runtime gain comparison results for our profile sensitivity experiments. The first
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Figure 12:Runtime improvement results illustrating profile input sensitivity. (Input A)

bar shows the scenario we use profile information from input Ato optimize and gather results. The second

bar shows the case where we optimize based on input A’s profile, but gather results using input B. The third

bar shows the results from using input A when we combine both inputs profiles using our averaging pass. By

examining the difference between the first and second bars, we may observe which applications are profile

dependant in terms of their recursive stack allocations. Wepresent similar results in figure 13 except these

are based on input B as the primary input instead of A. In general, we saw more sensitivity when basing an

allocation on a small program input profile and then using a much larger and more complex input on the

optimized binary. This is reflected in the generally better performance in figure 13, where the input B set

was generally more complex and consumed a much larger amountof runtime and energy than input A.

Looking at both sets of results, we find that our averaging optimization is able to greatly reduce the

profile sensitivity from our allocation approach. This can be seen by comparing the three bars in each

figure. In most cases, the average profile results are the sameor only slightly worse when using an averaged

profile versus the original profile for each input. We find thatas little as two different profile inputs can

significantly reduce the sensitivity of recursive stack data allocations to the input profile used. These results

serve to reinforce the fact that programs making heavy use ofdynamically allocated data are much more

prone to input profile dependance for allocation schemes decided at compile-time.

7 Conclusion

This paper presents the first automatic scheme to allocate local (stack) data in recursive functions to

scratch-pad memory (SPM) in embedded systems. With our method, all code, global, stack and heap vari-

ables can share the same scratch-pad dynamically at runtime. Our method is shown to significantly reduce
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Figure 13:Runtime improvement results illustrating profile input sensitivity (Input B).

runtime and energy for applications making heavy use of recursive stack data and also outperforms cache-

based schemes. Finally, we present an evaluation and solution to the input dependence problem common

to profile-based allocation schemes which most commonly afflicts dynamically allocated data such as heap

and recursive stack data.
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