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ABSTRACT This paper presents the first automatic scheme to allocate (stack) data in recursive
functions to scratch-pad memory (SPM) in embedded systésratch-pad is a fast directly addressed
compiler-managed SRAM memory that replaces the hardwamaged cache. It is motivated by its signifi-
cantly lower access time, energy consumption, real-tinumtls, area and overall runtime. Existing compiler
methods for allocating data to scratch-pad are able to mlalyecode, global, heap and non-recursive stack
data in scratch-pad memory; stack data for recursive fonstis allocated entirely in DRAM, resulting in
poor performance.

In this paper we present a dynamic yet compiler-directaatation method for recursive function stack
data that for the first time, is able to place a portion of reimgr stack data in scratch-pad. It has almost
no software-caching overhead, and is able to move recuisnation data back and forth between scratch-
pad and DRAM to better track the program’s locality chanasties. With our method, all code, global,
stack and heap variables can share the same scratch-pad. ddthpared to placing all recursive function
data in DRAM and all other variables in scratch-pad, ourlteshow that our method reduces the average
runtime of our benchmarks by 29.3%, and the average poweuoggtion by 31.1%, for the same size of
scratch-pad fixed at 5% of total data size. Furthermorejfgignt savings were observed when comparing
our method against cache-based alternatives for SPM #tlacaFinally, we show results that analyze the
effects of profile variation on our allocation approach anespnt a modified version of our method which
minimizes variation for profile-based allocations.

1 Introduction

In embedded systems, program data is usually stored in amedfinds of writable memories - SRAM
or DRAM (Static or Dynamic Random-Access Memories). SRAMaist but expensive while DRAM is
slower (by a factor of 10 to 100) but less expensive (by a famt@0 or more). To combine their advantages,
often a large DRAM is used to build low-cost capacity, anditaesmall SRAM is added for efficient access
to frequently used data.

In desktops, the usual approach to adding SRAM is to cordigiuas a hardware cache. The cache
dynamically stores a subset of the frequently used datahé&3dtave been a success for desktops — a trend
that is likely to continue in the future. One reason for thgiccess is that code compiled for caches is
portable to different sizes of cache; on the other hand, cod®iled for scratch-pad is usually customized
for one size of scratch-pad. Binary portability is valuafide desktops, where independently distributed

binaries must work on any cache size. In embedded system®&vbg the software is usually considered



part of the co-design of the system: it resides in ROM or aropiermanent storage medium, and cannot
be easily changed. Thus, there is really no harm to the leimdreing customized to one memory size, as
required by scratch pad. Source code is still portable, iewere-compilation with a different memory
size is automatically possible in our framework. This is agroblem, as it is already standard practice to
re-compile for better customization when a platform is gehor upgraded.

For embedded systems, the serious overheads of cachesadefensible. Caches incur a significant
penalty in area cost, energy, hit latency and real-timeauiaes. All of these, other than hit latency, are
more important for embedded systems than desktops. A elétsilidy [5] compares caches with scratch
pad. Their results are definitive: a scratch pad has 34% snaia and 40% lower power consumption
than a cache of the same capacity. These savings are sagmifimice the on-chip cache typically consumes
25-50% of the processor’'s area and energy consumptionctofmahat is increasing with time [5]. Even
more surprising, the run-time cycle count they measuredi88s better with a scratch pad using a simple
static knapsack-based [5] allocation algorithm, compaoea cache. Defying conventional wisdom, they
found absolutely no advantage to using a cache, even indrigrembedded systems in which performance
is important. With the superior dynamic allocation scheqmegposed here, the run-time improvement will
be larger. Given the power, cost, performance and real tihwardages of scratch-pad, and no advantages of
cache, it is not surprising that scratch-pads are the mostramn form of SRAM in embedded CPUs today
(eg: [1,7,26,27,35]), ahead of caches. Trends in recenteddead designs indicate that the dominance of
scratch-pad will likely consolidate further in the futukg 29], for regular as well as network processors.

Although many embedded processors with scratch-pad easbpiling program data to effectively
use the scratch-pad has been a challenge. Recent advaneesdde much progress in compilicgde,
global, heap and non-recursive stack variable® scratch-pad memory. Two classes of compiler methods
for allocating these objects to scratch-pad exist. FsHdtic allocation methods are those in which the
allocation does not change at run-time; these include 431, 32] and others not listed here. In such
methods, the compiler places the most frequently usedblasaas revealed by profiling, in scratch pad.
Placing a portion of the stack variables in scratch-pad tseagy — [4] is the first method to solve this

difficulty by partitioning the stack into two stacks, one &mratch-pad and one for DRAM. Second, more



recently proposedynamicmethods improve upon static methods by allowing varialddsetmoved at run-
time [10, 19, 34, 36, 39]. Being able to move variables erstadoring the allocation to each region in the
program rather than having a fixed allocation as in a statihate Dynamic methods aim to keep variables
that are frequently accessed in a region in scratch-padglthie execution of that region.

Recursive functions Recursive functions are widely used for large classes ofpeational problems.
They are the most natural and efficient way of programmingyredgorithms, including those that use
graphs, trees, and hierarchical databases. Virtuallyafitgor tree-traversal algorithms are recursive. In ad-
dition, some algorithms using arrays, such as quicksatakso recursive. Recursive functions are common
in many embedded domains, include communications, netagrlplanning, control, and transportation.
Indeed, we had no difficulty finding embedded benchmarks vetiursive functions. Moreover, in many
of these benchmarks, recursive functions dominated thd¢iman especially after other optimizations had
been done.

Unfortunately, even the most robust of the published SPdtation schemes lacks support for recursive
function stack data. This is not surprising since all exgptallocation methods work by finding frequently
used variables and placing them into SPM until fill&dhe allocator must know both the size of each allo-
cated variable as well as the total amount of SPM availalfteblished research has dealt almost entirely
with program objects having a fixed size at compile-time amtitime (code, global and stack data), al-
though one recent publication does present a method for tia@pas well. For recursive functions, the
stack frame size is fixed at compile-time but not the totalbernof frames allocated at runtiménithout
knowing their total size, existing SPM allocation methodssirieave recursive stack data in main memory.

Allocating recursive stack data to main memory, which is msiower than SRAM, can cause very poor
performance. The importance of allocating recursive stiatl rises dramatically for programs making sig-
nificant use of recursive functions, even more so when adiradlata has been optimized for SPM placement.
Also, as embedded platforms become more complex, so will soétware, increasing the likelihood that
dynamic storage methods such as recursive stack data wikdek more heavily. Finally, automatic meth-
ods for SPM placement exist only in the form of hardware cachdich have higher power and execution

costs when compared against a good compiler-directed SIBb&tbn scheme, particularly for dynamically



allocated data exhibiting randomized accesses.

This paper presents a new approach to handling recursigk d&da for allocation purposes. We first
take advantage of the fact that a recursive function has d §iiee stack frame known at compile-time. Our
approach is to examine the runtime behavior of individuatisframes at different depths corresponding to
the discrete stack frames. Using this information, we ptheemost commonly used depths, as detected by
profiling, into SPM and all other depths are left in main meynéinally, we also present a method to reduce

profile-dependence for allocation decisions, crucial wihealing with dynamically allocated program data.

2 Related work
Among existing work, static methods to allocate data to SRtide [3-5,15,28,31,32]. Static methods

are those in which the contents of SPM do not change at rua-tBome of these [5, 28, 31] allocate only
global variables to SPM, while others [3,4,15, 32] can @tedoth global and non-recursive stack variables
to SPM. Other static methods [33,40] can allocate both cadedata to SPM. These static allocation meth-
ods either use greedy strategies to find an efficient solubiomodel the problem as a knapsack problem or
an integer-linear programming problem (ILP) to find an optiisolution.

Another approach to SPM allocation are dynamic methodsuah snethods the contents of the SPM
can change at run-time [10, 12, 24, 25, 33, 34, 36, 38]. Théadein [24] can place global and stack arrays
while the method in [33] can place global and code. The methd86] allocates global and stack data
to SPM dynamically, with explicit compiler-inserted copgicode that copies data between slow memory
and SPM when profitable. All dynamic data movement decisitwasnade at compile-time based on profile
information. The method by Verma et. al. in [38] is a dynamigthhod that allocates code as well as global
and stack data. It uses an ILP formulation for deriving aocation. The work in [34] also allocates code,
global and stack data, but using a polynomial-time hegtrigtinally, the method in [10] is the first dynamic
SPM allocation method to place a portion of the heap datagrsM, making it the most complete to date
among the SPM allocation schemes by handling code, globah Bnd non-recursive stack data.
Recursive functions None of the SPM allocation publications in the literaturecdiss recursive stack han-

dling; instead they leave such data in main memory. Howevemwatechniques aim to convert recursive



functions into non-recursive functions. This is best seethe tail recursion (or tail-end recursion) opti-
mization [6, 8]. In tail-recursive functions, stack framasdifferent depths can share the same space in
memory since they have non-overlapping lifetimes. Sine& tiotal stack size is now bounded, scratch-pad
allocation is easy. However, most modern compilers such@S (&lso our experimental platform) already
implement tail recursion optimizations. Hence all the hsspresent in this paper show benefits beyond
those that can be achieved by tail recursive optimizations.

Transformation methods have also been studied that coliwgted classes of recursive functions into
other forms, such as loops [13]. Another method performsemore inlining to convert mutual recursion
to direct recursion [20]. This allows use of optimizatioctiniques that are most easily applied to directly
recursive procedures. A noteworthy publication presentsaaual method for transformation of general
recursive cycles into iteration [22]. However, their asgly and measurements show that some previously
considered optimizations can actually result in slowegpms. The fact is that there are many algorithms
in computer science which are most elegantly and efficiemtjyressed as recursive functions and not au-
tomatically or beneficially optimizable by existing metisodndeed, as far as we know, none of the above
techniques have been implemented in commercial or widedgduwpen-source compilers, despite being

available for decades.

3 Recursive function stack allocation

In order to consider recursive stack data for allocationctatsh-pad memory (SPM), our approach is
to treat each possible recursive function instance calitml greation at runtime as an individual variable
representing that particular invocation. For this apphoaee set the unit size for recursive function stack
allocation to be the entire stack frame for that functione Ttal stack frame size (allocated each time the
procedure is called) is fixed at compile-time for functionsvritten in C. Of course, the trivial case when a
recursive function does not consume any stack space doesedtto be considered for SPM placement.

We choose to allocate recursive stack data to SPM at the lgragwf an entire stack frame for several
reasons. First, some architectures (like ARM) may not ali®¢he entire frame upon function entry. These

platforms instead grow the stack as needed when executches certain points in the function code. For



safety, we conservatively bound the size of a recursivetiominstance to its total maximum frame size and
not to any of the possibly smaller sizes seen at runtime duiffierent visits to the functiod. Second, by
not attempting to handle individual variables within a ktfame, we greatly reduce the bookkeeping and
code-insertion overheads required by our method to cotfieohllocation of individual instances. Finally,
most recursive functions tend to contain a relatively smatber of stack variables and consume small
amounts of space per frame as compared to non-recursivédiasicmaking the stack frame an attractive
abstraction without significant loss of fine-grain control.

To implement our approach to allocating recursive funcgtack data, we have developed a complete
compiler-directed analysis and allocation framework Hage the best existing dynamic SPM allocation
scheme for heap data from [10]. This publication describbeuaistic approach to dynamic placement of
code, global, stack (non-recursive) and heap data into S®Mrhbedded systems. Our method can be
integrated directly to such a scheme using the details geovin the next few paragraphs.

Dynamic SPM allocation framework Since our overall SPM allocation framework is dynamic — iatth
the contents of SPM are different in different regions of phegram — we need to define what our choice
of regions is. Our SPM allocation strategy has a fixed allonahside each region, although the allocation
can change at region boundaries. Since our choice of regignestly orthogonal to our allocation strategy
for recursive frames, we only briefly outline our choice afioms here; the region definition is borrowed
from our earlier work in [34]. Regions are defined to beginijathe start of each procedure; and (ii) just
before the start, and at the end of every loop (even innersladmested loops). A region ends when the
next one begins. An example of how code is partitioned ingiores is in Figure 1. Other choice of regions
are possible, but we have not explored them since our expatithave found the above choice to perform
well.

For code, global and stack our earlier work has found dynatflocation to be superior to static alloca-
tion [34]. However within recursive functions, for reasensentioned above, each recursive stack frame goes

to a single memory (although different frames go to diffénegions.) Hence inside recursive functions,

IFor this same reason, we do not set the granularity down timttiéidual variable level as some variables may not appear i
all invocations at runtime, severely complicating safeaiyit allocation decisions along all possible program paths



int foo() { |

code 1 Region 1

v

code 2 _|
loop 1 { Region 2
code3_|
loop 2 Region 3

} -
code 4 Region 4
code5 |

}

Figure 1: A methodoo() is divided into code regions
there is little benefit do dividing into regions, and it woalido complicate code generatidror this reason,

G

each recursive function is always considered a single regiegardless of any loops inside iOf course,
recursive functions are in different regions from any neadrsive functions that call them, or that they call.
Program Profiling When attempting to allocate recursive stack data, it is it@mb to gather both static
and dynamic profile information on the program being optedizStatic profile information can be obtained
from a compiler by estimating the frequency of code. For gxammost register allocators estimate the
iteration count of all loops as a fixed value of 10. Nested $oape estimated with a cumulative iteration
count of 107 for loops at nesting depth In contrast, dynamic profile information can be obtainaduigh
instrumented execution of the program binary using apjetgprogram inputs. Very simple programs that
do not take inputs will have an accurate program representiiom only the static profile, but complex pro-
grams that are input-dependent will have incomplete pragvahavior information without a large amount
of dynamic profile data. When attempting to optimize dynaihjcallocated variables such as recursive
function stack objects, dynamic profile information becemmaich more important to obtain a clear picture
of probable program behavior at runtime.

To illustrate dynamic profiling useful for allocating resive stack data, we present a simple example of
a recursive function performing an in-order visitation atal structure nodes forming a graph. Figure 2(a)
shows pseudocode which implements the recursive funcfidns function simply visits each node in a
graph before visiting each of its children. Figure 2(b) shdke static profile frequency table (PFT) for the
function including extra variable information for this fttion. Figure 2(c) shows the dynamic PFT for same
function for a program input where the function recursedteeximum depth of three invocations. This last
figure shows our approach to dealing with recursive funetiand their stack variables. Our method treats

each possible runtime depth as a separate variable foripgoéihd allocation purposes, each with its own
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preorder(node v) {

visit(v); Name Size Accesses
for each child w of v Preorder depth 1 stack 20 100
preorder(w); }
(a) Code Preorder depth 2 stack 20 60
Preorder depth 3 stack 20 40

Name Size Accesses

Preorder 20 ?

(c) Dynamic Profile

(b) Static Profile

Figure 2: Example recursive function showing (a) functiode, (b) static profile, (c) dynamic profile.

size, access and lifetime information.

Deciding Allocations Before proceeding further, let us consider that what wdyeauld like: we would

like to specify exactly the recursive depths for which stéelmes should be allocated. For example in
figure 2, if we only had space for two recursive stack framesweuld choose those at depths 1 and 2,
since those had the greatest dynamic frequency of accesgh&rexample of more frequent access at the
root of the recursive tree is presented in Figure 3. This éiginmows a tree data structure, and how accesses
are more frequent at root nodes. Recursive functions oftea this behavior in that the first few frames are
more frequentHowever, we have also found programs with the exact oppbsttavior, when the last few
frames are more frequent; or where some intermediate-diepthes are the most frequerifo distinguish

these cases, we need dynamic profiling as described above.

e

Figure 3: Binary Tree with each node marked by its accessiémey for use by allocation analysis.

As an example of the behavior that may result, consider tratdme program, depths 3,4 and 5 may be
most frequently accessed for some recursive function, an&BM allocator should preferentially allocate
them to SPM. All other depths (1,2,6,7,...) should be atleddo DRAM. Our code generator should be
sophisticated enough to generate code to implement thib-ggpecific behavior. Note that it is incorrect to

simply allocate all depths to SPM, since the total SPM sizxlad for that is unbounded at compile-time.



No existing SPM allocation method is able to distinguishwiaetn recursive depths or allocate recursive
functions to SPM.

What we need to implement the above desired allocation isla generation method that can create
efficient code to implement the above. At first glance it sedtmas unwinding the recursive function by
repeatedly inlining it might help with code generation,cgiit provides individual copies corresponding to
each invocation depth of the function, essentially clortimg function into separate related functions. A
drawback with this approach is that it is hard to determine hwany times the function should be inlined
in itself since the theoretical maximum is unbounded. Meee@ven limited inlining increases code size.
For these reasons, our approach never does inlining omglorinstead it takes advantage of the behavior
observed in applications using recursive functions todally split them into individual instances which can
each be allocated separately and safely.

The key to segmenting a recursive function into its indialdimvocation instances is to take advantage
of its allocation behavior at runtime. Recursive functitack frames must be de-allocated strictly in reverse
order of their creation, so each stack frame is de-allocaeg that invocation has exited and returned to its
parent function. We take advantage of this restriction t&erizetter guarantees on predicting the accesses
to different instances of recursive variables and coiimadf different depths to access frequency of those
variables. Through judicious code insertion, it is possitdr a compiler to treat each possible depth of
invocation a recursive function may reach as a logicallyasate function, allowing individual stack frame
control for allocation to a chosen memory area.

Code generation To actually make use of the notion of separate recursiveifumistances for allocation,
proper code generation is essential. Our method beginsskyting a few lines of code at the entry and exit
points of each recursive function which are used to incréraed decrement depth counterrespectively,
for each optimized function body. This counter tracks theent invocation depth of that function at runtime
and serves as a way to virtualize a recursive function inpeusge instances.

The entry point into the function is modified so that the demibinter is checked upon entry and used
to decide if the stack pointer should be updated to an SPMidocar left at the current program value for

main memory. The most general check that is currently supported is thatddpth counter for a certain



contiguous range of its values should be allocated to SPM.example, if depths 3, 4 and 5 are to be
allocated to SPM, the check (slept h.counter > 3) or (depth_counter < 5). As another
example, if depths 1, 2 and 3 are to be allocated to SPM, thekdeelept h_count er < 3. Although

it is possible that the most frequently used depths are hobatiguous, we found in our experiments that
is rare, hence our current implementation only supportagleicontiguous range. When such a rare case is
found, we choose the single range of depth counter valudstidt greatest cumulative frequency. Checks
for multiple contiguous ranges can be supported, but thekihg overhead will increase, so it is not clear
they would be a good idea.

Each optimized invocation of the function must also reseameugh space to store its stack pointer
address for use when swapping the current function in andfo®PM, if dynamic movement of recursive
stack frames is desired.

Mutual recursion When a function calls itself, that is direct recursion. sioaally functions do not
call themselves, but are part of a recursive cycle of funstim the program’s call graph. For example,
function A() may call B(), which in turn may callA(). Recursive cycles which span more than a single
function are rare, and our own large benchmark set does ntdiocany examples of this type of recursion.
However, to support the full range of possible programs, aeehimplemented support for multi-function
recursive regions. Our solution is to increment the deptintar at the root function in the recursive cycle
— this is the function that is called from non-recursive ahares. Checks are inserted at each function in
the recursive cycle, as usual. If there is more than one rowttion in the recursive cycle, then the depth

counter increment can be placed at any one of the roots.

3.1 Profile sensitivity

Profile dependence is a problem inherent to any memory &lbocacheme which bases its decisions
on program profiles, whether they be compile-time(staticuatime(dynamic) profiles. As individual pro-
grams become more complex, they also tend to exhibit a mwgttehidegree of input profile dependence
in terms of execution and data access patterns. This icplaniy true for dynamically allocated data such

as heap or recursive stack objects. For example, the magtedntly accessed recursive depths could be
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different for a certain input data set compared to the reprasive input data set used for profiling. For such
profile sensitive applications, this dependence can causerpsults with bad allocation predictions.

For some applications profile sensitivity is not a probleatheir allocation and execution patterns vary
minutely when different program inputs are applied. Forotapplications however, there is an intrinsic
dependence between input data and data allocated and est@ssintime. Methods for optimizing dy-
namically allocated data must rely on dynamic profiling & grogram using typical inputs. When basing
general decisions on a limited set of profiles, it is vitattypiortant to reduce the sensitivity of the program
allocation scheme program profiles used. Comprehensivgsimaethods greatly increase the chance that
a chosen allocation will work well for the majority of expedtprogram inputs, particularly when dynami-
cally allocated memory accounts for a sizable percentagetalf data accesses. Our approach to reducing
profile sensitivity lies in accounting for both the statiogram profile and as many dynamic profiles as can
be obtained from representative inputs.

We take the following steps to improve the robustness ofoperdnce improvements across data sets.
First we create the profile frequency tables (PFTs) for eagion for each program input, containing the
code frequency of that region, as well as the profile frequerfcvariables accessed in that region. For
recursive functions (which always contain only one regiadhg PFT should contain one row per stack
depth. An example of the complete PFT for the recursive fanategion in figure 2(a) is in figure 4. This
is an extended version of the PFT in figure 2(c), but contgirrtra rows for the code block, and for a
global variable G accessed in the region (not shown in the)odhe second-to-last column of figure 4
shows the access frequencies for an extra data set (numberdédata set 2). The last column shows the
average access frequency across data sets 1 and 2 for ettevarhis average is used in the calculation
of the depths to be allocated to SPM, instead of the freqesnitom only one data set. This averaging
mechanism is a good way to prevent the profile data from beistechby extremes in input data sets. We
have found that this averaging improves the robustnesseqgieiformance gain across data sets by avoiding

over-specialization for any one data set.
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Variable Size Input Input Average

Name (bytes) | data set 1| data set 2 Frequency|
Preorder Code 28 200 180 190
Preorder depth 1 stack 20 100 80 90
Preorder depth 2 stack 20 60 66 63
Preorder depth 3 stack 20 40 34 37
Global G 4 20 18 19

Figure 4: Dynamic profile frequency table for the recursivegoam region in figure 2(a). This is a more
complete version of figure 2(c) with additional variablesl @m additional data set 2.

4 Results

This section presents the results obtained by comparin@lmgation method for recursive function
stack data against the usual practice of placing such d&R /&M, for a variety of compiler and architecture
configurations. For comparison, since there exists no ath@matic compiler methods to handle recursive
function stack data, we use the most general existing cemgitected SPM allocation scheme for code,
global, heap and non-recursive stack data from [10]. Thersehin [10] is chosen for comparison since it
is one of the only schemes in the literature that can alsolbdrehp data. Its handling of code, global and
non-recursive stack data is based on the dynamic methodjntgnce the comparison method represents
the state-of-the-art method for SPM allocation today.

Our method for allocation of recursive stack data is builtamof the comparison scheme and augments
its capabilities. Since our method and the comparison gpéeimented in the same compiler and simulation
environment, the comparison is fair. All applications avenpiled automatically using full optimization lev-
els without requiring the user to specify anything othenttiee SPM space available on the target platform.
An external DRAM with 20-cycle latency, an external Flashnmoey of 20-cycle latency, and an internal
SPM (SRAM) with 1-cycle latency is simulated in the defawdhfiguration. Flash is used to store code;
DRAM and SPM store program data. The default configuratiandmaSPM size which is 5% of the total
data size of the program. The total data size for a programeisrntaximum memory occupancy during the
course of its execution and not simply a sum of the total dbjaats allocated throughout its lifetime. The
DRAM size, of course, is assumed to be large enough to hofat@diram data.

Methodology Details Our compiler-based allocation method is implemented or@N&J Compiler Col-

lection(GCC) v4.1 cross-compiler [11] released by CodeS&ay and targeting the ARM v5e embedded
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Anagram| Bh | Bisort [ Cfrac | Epic | Heath| Mst | Patricia Perimete| Qosort [Treeadd Treesort | Trie | Tsp [Voronoj Yacr2
Benchmark Source PirDist | Olden | Olden MallocBenciMediaBenchl Olden |Olden| MiBench{ Olden McCat Suitq Olden |LLVM SuitghcCat Suitg Olden | Olden | PtDist
% Data that is Rec. Stack 008 | 093057 020 | 003 |004] 0] 002]006( 004 [003] 002 | 018 |0.06]005]0.03
% Data Access by Rec.Stack | 0.07 (582016608 1.02 | 045 |[7414|1.07) 271 [ 78.18 | 1564 |97.70| 56.34 | 68.79 |50.89| 8.86 [12.48
% Rec. Access to SPM 100 [96.78]4187 0 100 [99.75]100] 97039954 0 100 | 100 | 9221 [28.68(83.58/98.90
# Unique Rec. Stack Depths 11182 5 R o164 13 [2] 15 106 | 4] 11]45

Figure 5:Benchmark Statistics Table.

processor family [16]. Execution results are obtained fasemARM simulator included as part of the Gnu
Debugger (GDB) v6.2 software, augmented to accurately imitglexecution and power characteristics.
The energy consumed by programs is estimated using thedtisti-level power model proposed in [21]
using ARM specific information from [30]. To model SPM, we baadopted an approach similar to those
in [5], [33] and [18], in which we simplify the CACTI [9] estiation model to match an SRAM mem-
ory module. We have also incorporated the DRAM power estonanodel provided by MICRON [17]
for their external DDR Synchronous DRAM chip [23]. All dee& were simulated at 200MHz with an
operating voltage of 1.5V.

Benchmark Suite For our experiments, we gathered a large number of freeljadl@ applications suited
to the embedded domain. All applications make use of coadnatyl stack, heap and recursive stack data
and have not been modified. Figure 5 shows important staigttm each program. Each program contains
between 1-100 unique recursive stack instances. For theeseirsive stack data makes up less than 1%
of the data size, yet recursive stack accesses make up naor&®6 of total accesses for fully half of the
programs. At only 5% SPM, our method is able to place more 8@ of all recursive stack accesses
into SPM for 70% of the benchmarks. As with any allocationtmoedt improvement is proportionate to the
contribution of the optimized variable to total programtioe.

Runtime and energy gain Figure 6 compares the normalized runtime from our methodugefrom the
existing practice of placing all recursive stack data in DlRAVithout our method, this SRAM is used only
by code, global, heap and non-recursive stack data; withmmihod the SRAM is shared by all types of
variables. The figure shows that the average runtime reduces by 29.3%ibg our method for the exact
same architectureThe large average improvement shows the potential of otinadeo reduce runtime of

recursive applications beyond today’s state-of-the-art.
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Figure 6:Normalized runtime from using our method versus allocatiegp data in DRAM.

In general, runtime and energy improvements from allocabirecursive stack data to SPM are propor-
tional to the percentage of data accesses made to recussajeatid inversely proportional to the percentage
of the program data size consumed by recursive stack vasatf\pplications with a small percentage of
accesses going to recursive data will not benefit greatiy foor scheme, and can be seen in the perfor-
mance of Anagram, Cfrac, Epic, MST and Patricia. Other apfibns in our set are almost dominated by
recursive functions and more than half of all data accessemade to recursive stack frame. This is the
case in Bh, Bisort, Health, Perimeter, Treeadd, Treesoi, and Tsp. Some applications may have high
percentages of recursive stack accesses, but cannot bemased at 5% spm due to allocation pressure
from more important code and other variables at limited SPMss This is the case in Qbsort, where most
recursive data is placed at 10% SPM and larger sizes. Yatsdsrgeresting in that the allocation of re-
cursive data is done statically and reduces the transfés ausurred by non-recursive functions allocated
by the baseline method. Other programs with modest amofimécarsive stack accesses will show more
modest improvements in runtime, such as Voronoi.

Energy gain Figure 7 compares the energy consumption of programs usingnethod versus placing
recursive stack data in DRAM. The figure shoves average reduction of 31.1% in energy consumption
using our method. This result demonstrates that our apprbas the potential to not only significantly
improve runtime, but also energy consumption. While ourhoétprimarily seeks to reduce runtime, this
corresponds with a proportionate reduction in the energyg@mption of the system for applications in our
experiments. The energy reduction from SPM allocation gy teasons: because SRAM cells take less

energy to access than DRAM cells; but much more importatiilylatency saving with SRAM means the
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Figure 8:Percentage of recursive stack accesses made to DRAM.

processor pipeline is stalled for less time, saving on maoeidle-cycle energy, which is very significant.
Reduction in recursive stack DRAM accesses Figure 8 shows the percentage of memory accesses to
recursive stack data going to DRAM after applying our methlodthis figure, any applications without a
bar indicate that our method was able to allocate all acdassirsive stack variables into an SPM of 5%
data size. The number of DRAM accesses is sometimes incrégsthe DRAM-to-SPM copying code at
the beginning of dynamic regions, but is reduced much morthéyincreased locality afforded by SPM.
Considering both effects, the average net reduction acr®sshmarks is a significant 77.4% reduction in
DRAM accesses for an SPM size that is only 5% of the total da&a #nalyzing the results shows that our
method was able to place many important recursive stackblag into SRAM without involving transfers,
explaining the high reduction in DRAM accesses for many berarks. This was somtimes correlated with
a small increase in transfers for less important variabldsch were evicted to make room for the more
frequently accessed recursive stack variables.

Effect of varying SPM size Figure 9 shows the effect of increasing SRAM size on the peage gain

in runtime from our method. The SRAM size is expressed as ¢énegntage of the total data size for the

application. The average runtime gain from our method safiem 29.3% to 39.5%, when the scratch-
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Figure 9:Effect of varying SPM size on runtime improvement.
pad size percentage is varied from 5% to 25%. From this welsgericreasing the SRAM space beyond
5% gives only a relatively small additional benefit on averadhis is because only a small fraction of
the program data is frequently used. A similar effect is deercaches: a very large cache does not yield
much better performance than a moderately sized cache \\4.also observed a reduction in energy
consumption ranging from 31.1% to 43.5% when spm size isdafmot shown). The results from this

experiment reinforce the effectiveness of our techniquef@nge of SPM sizes in embedded platforms.

5 Comparison with caches

This section compares the performance of our method fotatead memories (SPM) versus alterna-
tive architectures using either cache memory alone, SPMealocache and SPM together. Itis important to
note that our method is useful regardless of this compah®saause there are a great number of embedded
architectures which have SPM and DRAM, but have no data cadiese architectures are popular because
SPMs are simple to design and verify, and provide bettertiea guarantees for global and stack data [41],
power consumption, and cost [2,5, 33, 38] compared to cadtmgertheless, it is interesting to see how our
method compares against processors containing caches.

Our dynamic SPM allocation method shares similarities wittache memory design but also has some
important differences. Like caches our method gives peefeg to more frequently accessed variables by
allocating them more space in SPM. One advantage of our mhéthihat it avoids copying infrequently
used data to fast memory; a cache copies in infrequent data attessed, possibly evicting frequent data.

One downside of our method is that a cache retains the useétsobrecursive stack variables in SRAM,
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while our method retains a fixed subset.

We compare three architectures (i) an SPM-only architecfiij a cache-only architecture; and (iii) an
architecture with both SPM and cache of equal area. To eadiaiecomparison the total silicon area of fast
memory (SPM or cache) is equal in all three architecturesranghly equal to the silicon area of the SPM
in our main results section (which holds 5% of the memorygdat for each benchmark). Since cache must
be a power of two in size and Cacti has a minimum line size oft8dythe sizes of caches are not infinitely
adjustable. To overcome this difficulty we first fix the sizecathe whose SPM-equivalent in area holds
the nearest to 5% of the data size. Then an SPM of the samesarkasen; this is easier since SPM sizes
are less constrained. For an SPM and cache of equal areacthe ltas lower data capacity because of the
area overhead of tags and other control circuitry. Area aiedgy estimates for cache and SPM are obtained
from Cacti [9, 42]. The unified cache simulated is direct-pwp (better hit rate for very small cache sizes),
has a line size of 8 bytes (minimum supported by Cacti), aml@s5 micron technology. The SPM is of the
same technology but we remove the tag memory array, tag colanitiplexers, tag sense amplifiers and
tag output drivers in Cacti that are not needed for SPM. Threeidi cache simulator [37] is used to obtain
run-time results; it is combined with Cacti’s energy estiesgoer access to yield the energy results.

Figure 10 shows the normalized run-times for different #gecture and compiler pairs, obtained for
all benchmarks. The first bar is without our recursive stdtdcation methods for the SPM-only design,
against which the other bars are normalized. The secondhbarssthe runtime for the SPM-only design
when we also apply our recursive stack allocation methoe tiind and fourth bars are similar to the first
and second, except that for these two we have a SPM and caaitetbder on the same platform. The third
bar shows the results when we allocate code, global, heap@mdecursive stack objects to SPM and let
the cache handle all recursive stack accesses. With a c&dRai present, both the transfers required for
our methods as well as standard DRAM memory accesses alerated through the cache. The fourth bar
corresponds to the case when we apply our full SPM allocatitieme to all data objects, and let the cache
handle all DRAM accesses made, again improving transfatsaacesses to DRAM. The fifth and final bar
is for the cache only architecture where all data residesRIAM and is accessed through the cache only.

From the results shown in figure 10, we see that the cacheapgyoach performs significantly worse
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Figure 11:Normalized energy usage averaged across all benchmardtifeaent architecture/compiler pairs.

than any of the other methods on average. This correlatdsawit results from previous work on heap
data allocation, where we found that very small caches parfeery poorly for programs that make heavy
use of dynamically allocated data, usually causing ™cattirashing™ at runtime. The scenarios where
our method was applied on the Cache + SPM platform perfornetidrithan the cache-only scenario, but
failed to reach the performance of the SPM-only hardwaréfgeta using a compiler-directed dynamic
allocation scheme. Finally, the scenario where our allonagcheme is applied to an SPM-only platform
performed the best with a 32.6% improvement in runtime cowbto the baseline, and a remarkable 72.1%
improvement on average over the cache-only architectunghwitself performed 40.45% worse than the
baseline. Figure 11 shows the normalized energy consumfuiiche same configurations as in figure 10,
and tracks the execution results.

It is interesting to analyze the strengths and weaknessesirainethod versus caches in the light of
these results. From careful analysis of individual benatkmesults, we have found that in many cases,

caches simply do not perform well for dynamically allocapedgram data, particularly at small sizes where
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cache conflicts are more common. Comparing the results c6B + cache scenarios, they show that
caches generally have a much harder time with recursiv& dga (and heap) than with non-recursive stack
and global data. The most common use of recursive functioapplications is for processing of dynamic
data structures such as lists, trees and graphs. Dynamipeantkive traversal of such data structures is
often unlocalized with pointer reference chains tendingdoess non-sequential memory locations; both are
problematic for caches. Caches, on the other hand, perfestdy localizing sequential memory accesses
from applications such as a media encoders and are alsocalolealize accesses to variables too large to
place in SPM. The cache scenarios also tended to make usalgss transfers for data which our method
left in main memory. We found that a great deal of program dhtaild always remain in main memory, as
transferring it in and out for only a few accesses is sernjodstrimental to efficiency.

Furthermore, when the runtime stack for a recursive funcigoviewed as a stacked memory array,
most recursive functions also tend to make most of their mgimccesses at either the deepest or shallowest
levels of recursion. Our method is able to select which iatioois of a recursive function are placed in SPM
and allowed to evict other variables. Caches, on the othad,haust transfer a cache line from DRAM to
SRAM for every access miss incurred. Often in recursivetions, the entire recursive stack frame will be

loaded into SRAM, evicting more useful data and deteringathe performance of cache-based systems.

6 Profile sensitivity

Having shown that are method is able to analyze and optinmizgpalication for a given input set, we
also wish to see how well our method performs on a nonprofiipdtiset. We would also like to evaluate the
performance of our profile averaging pass for reducing grefiinsitivity. Because we are dealing with two
very different program inputs, each with its own data size mmtime characteristics, for these experiments
we fix the SPM size to be 5% of the larger data size for a fair @apn. All other experiments in this
paper are based on input A. Other experiments (not showrdbas input B showed some fluctuations in
results for the applications, but on average achievedmentind energy savings within 2% of those from
input A.

Figure 12 shows the runtime gain comparison results for oofile sensitivity experiments. The first
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Figure 12:Runtime improvement results illustrating profile input siéimity. (Input A)

bar shows the scenario we use profile information from inpt Aptimize and gather results. The second
bar shows the case where we optimize based on input A's prbiiteyather results using input B. The third
bar shows the results from using input A when we combine bgihts profiles using our averaging pass. By
examining the difference between the first and second barsnay observe which applications are profile
dependant in terms of their recursive stack allocations.pW#sent similar results in figure 13 except these
are based on input B as the primary input instead of A. In génere saw more sensitivity when basing an
allocation on a small program input profile and then using &hrlarger and more complex input on the
optimized binary. This is reflected in the generally betterf@rmance in figure 13, where the input B set
was generally more complex and consumed a much larger arobrunitime and energy than input A.
Looking at both sets of results, we find that our averagingndpation is able to greatly reduce the
profile sensitivity from our allocation approach. This caam $een by comparing the three bars in each
figure. In most cases, the average profile results are the @aomty slightly worse when using an averaged
profile versus the original profile for each input. We find thatlittle as two different profile inputs can
significantly reduce the sensitivity of recursive stackadatocations to the input profile used. These results
serve to reinforce the fact that programs making heavy usymémically allocated data are much more

prone to input profile dependance for allocation schemeisldgé@t compile-time.

7 Conclusion

This paper presents the first automatic scheme to allocas (stack) data in recursive functions to
scratch-pad memory (SPM) in embedded systems. With ouradetl code, global, stack and heap vari-

ables can share the same scratch-pad dynamically at runBeremethod is shown to significantly reduce
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Figure 13:Runtime improvement results illustrating profile input siéimity (Input B).

runtime and energy for applications making heavy use ofredoel stack data and also outperforms cache-

based schemes. Finally, we present an evaluation andasohatithe input dependence problem common

to profile-based allocation schemes which most commonlictfitlynamically allocated data such as heap

and recursive stack data.
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