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1. Introduction 

The past decade has shown explosive growth in the performance and capability of computer systems, driven by 

advances in VLSI technology that have allowed an ever greater number of components to fit onto a silicon chip.  

Computer architectures have evolved to harness this growth and translate it into increasingly powerful computer 

systems.  To take advantage of the larger volume of resources available to designers, parallel computer 

architectures have been developed to better utilize multiple resources in concert.  The use of parallel design appears 

in various forms in current computer systems and includes such techniques as pipelining, superscalar processors, 

VLIW processors, and multiprocessor systems. As uniprocessors are reaching their performance limits, it is only 

natural that the use of multiprocessor parallel systems has become popular for large and complex applications 

entailing enormous amounts of computation.  

In essence, a parallel computer is a collection of processing elements that communicate and cooperate to solve 

large problems fast [1]. Given this definition, it is reasonable to view parallel architecture as the extension of 

conventional computer architecture to address the issues of communication and cooperation among the processing 

elements. The design of this communication architecture specifies both the basic communication and synchronization 

operations required at the hardware/software interface, as well as how to implement these operations in high 

performance communication hardware. The bulk of parallel computer design has thus fallen into two large groups 

according to their programming models for communication support. These consist of the message passing approach 

and the shared memory approach. 

In the message passing machine, each processor has its own memory modules, and all the processors are 

connected through an interconnection network. A processor cannot directly access the data on another processor's 

memory, and instead sends and receives messages through library functions to exchange data with another 

processor. On the other hand, shared memory machines share a unique, global memory address space that is 

accessible to all of the processors.  Communication between processors is then done by writing and reading from 

the same global memory locations, similar to the traditional multithreaded approach in uniprocessors. Despite their 

differences in communication structure, both types of parallel systems rely heavily upon the interconnection network 

that links their processors, and numerous designs have been proposed and implemented to achieve optimal 

communication speeds for these systems.  
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Since the field of parallel architecture is such a large one, only distributed shared memory (DSM) 

multiprocessors will be focused on in this paper, with the emphasis being placed on the typical interconnection 

networks employed in this class of systems.  Distributed shared memory machines are one of the prevalent types of 

shared memory machines in use today, and generally fall into the category of Cache-Coherent Non-Uniform 

Memory Access (CC-NUMA) architectures, which are illustrated in Figure 1.  The processors in these machines 

each possess their own memory modules, accessible by all processors, and private caches, which must be kept 

coherent with respect to all remote operations on cached data blocks. In order to provide programmers of these 

systems with a view of a globally shared memory space, a great deal of communication is required between 

processors to transfer data requests between processors and remote memory modules, and to ensure cache 

coherence in the system.  The effectiveness of the shared memory approach then depends on the latency incurred 

on memory accesses, as well as the bandwidth of data transfer that can be supported. Indeed, the performance of 

the interconnection network used can be one of the main bottlenecks for a DSM [2]. 

The interconnection networks present in DSM machines can vary greatly, depending on several factors. The 

processing nodes can either be loosely or tightly coupled by the network.  Loosely coupled machines are also known 

as clusters and can consist of multiple individual computers tied together by local area networks (LANs) or wide 

area networks (WANs). Tightly coupled architectures usually consist of processing nodes that have their CPU, 

memory and network modules tightly integrated and connected with specially designed, low-latency, high-bandwidth 

networks inside of one large chassis.  The amount of coupling present in a DSM is directly related to its cost, size, 

and performance [3].  A DSM using specially designed, high performance networks with tightly integrated nodes 

tends to cost more and perform better than a design that uses commercial networking products and readily available 

workstations as processing nodes. The types of networks used in both approaches can further vary according to 

their topologies and inner communication structures.   

The rest of this paper will present a few examples of tightly and loosely coupled DSMs and the alternative 

networks they employ.  The effectiveness of their network design as well as of the techniques employed to improve 

performance will be presented. Some results from benchmarks run on these machines will also be shown to gauge 

the effectiveness of their overall design. 

 

2. Tightly Coupled Machines  

   2.1 The SGI Origin 

Arguably the most commercially successful DSM in the parallel computing field is the SGI Origin line of 

multiprocessors [4]. The SGI Origin 2000 is a CC-NUMA multiprocessor that uses a directory-based cache 

coherence protocol. Its DSM architecture provides global addressability of all memory, and its I/O subsystem is also 
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globally addressable. DMA operations can be performed between any processor and any I/O device address. The 

basic building block of the Origin is a dual-processor node that contains up to 4GB of main memory, a Hub, and an 

Xbow I/O interface.  The system can have up to 512 Origin nodes, for a maximum of 1024 processors and supports 

up to 1TB of main memory. The Hub is a combined communication/coherence controller and network interface for 

each node, while the Xbow handles all traffic between the nodes and their I/O devices. A diagram of these 

components is shown in Figure 2 [4]. The bandwidth of the bus connecting the two processors to the Hub in a node 

is 780 MB/s, which is also the bandwidth of the Hub's bus to the memory on the node. The bandwidth of the buses 

from the Hub to both the network router chip and the Xbow controller are 1.56GB/s each.  The design of the Origin 

represents numerous features common to high-performance DSMs, as well as incorporating many of the common 

network optimizations in use today. 

XBow

 

The Origin interconnection network uses SPIDER [5] router chips to form hypercube network topologies. The 

SPIDER chips are scalable, and connect to form efficient hypercube topologies as the number of nodes is increased. 

The SPIDER chip features six pairs of unidirectional links per router, low-latency wormhole routing, four virtual 

channels per physical channel, congestion control for adaptive routing between virtual channels, support for message 

priorities via packet aging, CRC checking on each packet with retransmission on error via a sliding window protocol, 

and software programmable routing tables. Each pair of links has high bandwidth (1.56 GB/s total per link in the two 

directions) and low latency (41 ns pin-to-pin through the router).  The performance of the Origin's network relies on 

its high-bandwidth interconnection topology and the features of the SPIDER routers, which will be discussed 

individually.  

Architecturally, the Origin enjoys many advantages from the design of its interconnection network and router 

chips. It has been shown that network speed, link width, and network topology all greatly affect the performance of 

a DSM [8].  The Origin employs a high-speed network, capable of ideally transferring 780MB/s along each 

unidirectional link.  More realistically, it has been reported that the network bandwidth is about 613MB/s, measured 

for a one-way 512MB data transfer in 16KB chunks [9].  This is still quite fast, as each router has six pairs of such 
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links, with two pairs used to connect its two nodes and the other four pairs connected to adjacent routers in the 

hypercube.  The link width in the Origin is assumed to be 2 bytes, as the SPIDER operates at 400 MHz and ideally 

transfers 780MB/s. Dai and Panda[8], observed that as the granularity of a parallel application decreases, increasing 

the link speed has a substantial benefit on the overall execution time.  They also observed that for increasing link 

widths, there was not a significant amount reduction in execution time, and that increasing network speed was more 

beneficial than increasing the link width. From this it seems that the Origin's choice of a faster clock rate and lower 

width favors overall performance. 

   2.1.1 Origin’s K-ary N-cube Topology 

A general performance analysis of k-ary n-cube interconnection networks has long been a standard method of 

evaluating the effectiveness of typical multiprocessor topologies [7]. The Origin hypercube has a k (radix) value of 

2, so that there are 2 vertices per dimension and it can have n spatial dimensions.  Each vertex in the Origin 

corresponds to a SPIDER router and two Origin nodes. A 3-dimensional hypercube (binary 3-cube) is formed for 32 

processors, a fat hypercube is formed for 64 processors, and a hierarchical fat hypercube is formed beyond 64 

processors. Figure 3 [4] shows these arrangements for a 32 and 64 processor system.  The topologies formed by 

scaling the Origin system enjoy a constant bisectional bandwidth, a desirable attribute in parallel systems [6].  With 

the topological features of the Origin in mind, the impact of its design can be evaluated.    

 

 

The way the network topology of the Origin is scaled provides it with a constant bisection bandwidth.  The 

bisectional bandwidth of a topology is determined by dividing the system in half (bisecting) and counting the number 

of cut link connections that would have let one half communicate with the other half. As the number of processors in 

a system grows, it is highly desirable to have the bandwidth of the topology grow proportionally to prevent 

bottlenecks and reduce the amount of congestion.  An advantage of the Origin scalable topology is that the 

hypercube system shows a constant 1/8 cut-links per CPU, regardless of its size, while maintaining constant link 

width.  This bandwidth scaling is apparent from the fact that an n+1-dimensional hypercube can be constructed by 

joining two-dimensional hypercubes at their common vertices.  Dally [7] has shown that maintaining a constant 
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bisection bandwidth without decreasing the link width is essential to favorable network performance in a k-ary n-

cube.  Indeed, it has been shown by Jiang [9] and Laudon [4] that the latencies for memory accesses scale 

somewhat linearly as the Origin machine size is increased, according to the number of switches a packet has to 

traverse. The choice of the Origin's topology and interconnection scheme allows it to scale well, and avoid the 

congestion and bottlenecks that plague some DSM topologies.  

   2.1.2 Routing in the Origin 

Besides physical parameters, there are other design considerations that improve network performance in the 

Origin. To motivate these optimizations, a review of interconnect network properties follows.  An interconnection 

network is specified by its topology, routing and flow control [12].  The topology of a network is the arrangement of 

nodes and channels into a graph while routing deals with how a packet chooses a path in this graph. Flow control 

handles the assignment of channel and buffer resources to a packet as it travels along its path.  Packets are the 

smallest unit of information in a network that contains routing and sequencing information. A packet contains one or 

more flow-control digits, also called flits. A flit is the smallest unit over which flow control is performed. Information 

is transferred over physical channels in physical transfer units called phits, which are usually the same size or 

smaller than flits.  It is known that the most costly resource in an interconnection network is physical channel (wire) 

bandwidth, and the second most costly resource is buffer memory [11]. In a simple interconnection network, 

throughput is limited because of the way buffers and channels are allocated [10]. Usually a single FIFO buffer at a 

router is associated with each channel in such a network.  While this simplifies the router design, it often results in a 

router becoming blocked once its buffer fills due to congestion on one of its outgoing links. This prevents other 

packets from using the blocked router to go to other uncongested channels.  This is especially true in store-and-

forward routed networks [13] that wait until an entire packet has arrived at a router before sending it on to the next 

router in its path. 

 



 7

One improvement over standard network technique is seen in the Origin's use of low-latency wormhole routing 

in its SPIDER chips. Wormhole routing is a flow-control protocol that pipelines packet transfer by advancing each 

flit of a packet as soon as it arrives at the router [14]. It blocks packets in place if the outgoing channel is 

unavailable. The advantages of wormhole routing are that it reduces the latency of message delivery when 

compared to store-and-forward routing [11], and it requires that only a few flits be buffered at each router as the 

packet makes its way to its destination.  This reduces the amount of buffering necessary at each router and allows 

faster, cheaper routers to be built. Wormhole routing is widely used, and works especially well with the virtual 

channel flow control technique.   

   2.1.3 Flow-Control Optimizations 

Combined with wormhole routing, the SGI Origin implements four virtual channels per physical channel, using 

virtual channel flow control [11]. In a simple router, each input channel has a single FIFO buffer associated with it, 

and all such input buffers connect to an output channel switch.  A conventional router then restricts buffer allocation 

so that only flits from the same packet can be stored on a given input buffer. If a packet becomes blocked from 

leaving the router on its chosen output channel, this prevents the buffer from being used for other incoming packets. 

While this problem is alleviated somewhat by wormhole routing, it can be further helped with the use of virtual 

channels. With this scheme, each buffer can be split into several buffers that can each be used for different packet 

flits. These buffers form virtual input channels and a blocked outgoing packet will then only block one of these 

virtual channels, allowing the rest of the virtual channels to be used for routing other incoming packets through idle 

output channels.  Figure 4 shows a block diagram of the SPIDER routing chip, with the virtual channels associated 

at each physical input channel [4].  The reduction of the original buffer size into smaller virtual channel buffers is 

also not as severe of a problem when wormhole routing is used, as usually only a few flits for a packet need to be 

buffered at a router. Dally [11] has shown that the use of virtual channels in an interconnection network significantly 

increases throughput and reduces latency as network traffic increases towards saturation.  Additionally, the use of 

virtual channels allows adaptive routing and message priority techniques to be naturally implemented, which can 

further improve network performance in the SGI Origin.  

The Origin reserves one of its virtual channels for request network transactions, another for responses, and the 

remaining two can be used for congestion relief and high-priority transactions when needed, or are used for I/O 

traffic otherwise.   This combination of channels allows the Origin to support adaptive routing techniques to avoid 

congested areas, priorities for packets in the network, and error-free packet transfers. Inside of each SPIDER chip 

is a software programmable routing table. When a router forwards a packet through its request virtual channel to the 

next router in the packet's path, the receiving router sends back an acknowledgement through the response virtual 

channel to the sending router. This acknowledgement contains information on whether the flit was accepted, 
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depending on buffer space in the receiving router.  This information is used to update internal software-

programmable routing tables in the router chips, allowing it to identify channels that are congested with network 

traffic, and letting it specify alternate routes for packets.  This adaptive routing helps to distribute traffic evenly 

across the network, and avoid heavily congested areas, increasing overall network throughput.  The 

acknowledgements sent between routers are generally quite small, and consume a very small amount of the network 

bandwidth in the Origin.  Additionally, when a packet arrives at a destination node's router, it is CRC-checked for 

errors, and the router maintains a sliding-windows protocol that allows for retransmissions on errors. This ensures 

error-free network data transfers. 

   2.1.4 Congestion and Deadlock Issues 

In addition to adaptive routing to avoid congested areas, message priorities can be assigned to packets traversing 

the network, giving preference to high-priority messages for routing towards its destination.  Priorities are increased 

the longer a message remains in the network, via a packet-aging scheme. This ensures that the longer a packet 

blocks due to congestion, the more its priority is increased, which ensures prompt delivery of those messages which 

have spent more time in the network. These message priorities help reduce the average latency of packets in the 

network, as well as providing a way for important messages to quickly traverse the interconnection network.  

While the enhancements employed in the SPIDER chip increase network performance in the SGI Origin, they 

also introduce some common problems that must also be dealt with, namely those of out-of-order message arrivals 

and deadlock in the network.  In the Origin, messages can arrive out-of-order with respect to when they were sent, 

due to the adaptive routing and congestion avoidance techniques used. This can cause race conditions in the way 

data is updated by the machine.  To deal with this problem, the Origin uses a more complex cache-coherence 

protocol than what simpler DSMs use, which detects out-of-order message arrivals and resolves their arrivals 

correctly. The possibility of deadlock between routers in a network is also resolved by the Origin through the use of 

its virtual channels [14] and its flow-control protocol, which detects deadlock situations locally and removes 

messages from the network to break deadlock cycles.  



 9

 

   2.1.5 Performance Evaluation of the Origin System 

To evaluate the overall effectiveness of the SGI Origin as a DSM, the results from several benchmark programs 

that make use of shared-memory parallelism have been published [9]. Representative kernels and applications from 

the SPLASH-2[15] application suite were chosen to be executed and their performance analyzed on the Origin. The 

speedups obtained over the uniprocessor execution time of each application are plotted for different numbers of 

processors in Figure 5. Figure 6 shows splits the average execution times of each program into the percentages of 

time spent on synchronization stalls, memory stalls, and busy time spent executing code.  Overall, the Origin 

generally delivered good parallel performance for the programs shown, although only a maximum configuration of 32 

processors was tested.  Of these, FFT, Radix and Ocean were found to waste significant amounts of time during 

communication operations, indicative of poor network response. Both FFT and Radix exhibit all-to-all communication 

patterns and bursty communication traffic during execution, which strains the network despite its high bandwidth 

design. Upon investigation, this appears to be due to the fact that a node consists of two processors which share a 

coherence controller and that a router is shared between two nodes.  The FFT and Radix programs cause 

contention for access to the network at these interfaces, which significantly reduces their performance. Ocean also 

spends a large amount of time waiting for communication operations since it repeatedly requests large blocks of 

remote data during execution, but still shows very good speedup compared to the uniprocessor case. Overall, the 

aggressive communication architecture greatly helps execution speeds for most programs by achieving a low latency 

ratio between remote and local memory accesses.   

The performance of the Origin shows the advantages obtained by using a tightly coupled DSM architecture. The 

use of a high-speed interconnection network with numerous optimization techniques helps reduce the impact of 

supporting a shared memory environment across physically distributed processing nodes.  Unfortunately, the decision 

to share some network resources between processors to save on space and cost issues has been reflected in the 

poor communication performance of some applications, despite the Origin's powerful network topology. The other 

major tradeoff with a tightly coupled machine such as the Origin is reflected in its cost, both in terms of time spent 
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during development and final production costs. For example, a typical 24 processor (250 MHz) Origin 2000 costs 

well over $150,000 [16].   The high cost of such tightly coupled DSM machines has prompted research to investigate 

loosely coupled architectures in an attempt to find a cheaper way to achieve adequate parallel performance.  

   2.2 Other Tightly Coupled DSM Machines 

Besides the SGI Origin, there are many other examples of tightly coupled DSM multiprocessors that make use 

of different interconnection networks.  This section will highlight some of the interesting designs and features of the 

interconnection networks used in other machines. 

   2.2.1 The Stanford FLASH Machine 

The Stanford FLASH Multiprocessor [17] is another scalable CC-NUMA machine that has been widely studied 

in the field, and whose network structure has been used in many shared memory machine designs. It makes use of a 

2D-mesh topology, which is essentially a k-ary 2-cube, where k gives the number of nodes along each of the k rows 

in the grid. Each node consists of a commercial MIPS processor, a shared memory module, and a node controller 

used to interface with the network and I/O devices for that node. Figure 7 shows an overview of the FLASH 

architecture. FLASH makes use of a programmable microcontroller called MAGIC as its node controller, which 

controls all data transfers both within the node and between the node and the network.  The latest information on the 

FLASH project shows that only 3 processors had been connected using an Origin 2000 interconnection network, and 

work continues to create a larger machine. A simulation of a DSM very similar to FLASH was undertaken to 

explore the effects that the choice of interconnection network parameters would have on its performance [8]. 

 

   2.2.1.1 FLASH Network Design Evaluation 
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 The FLASH network simulation was done for a 64-processor machine for which the performance impact of 

different network speeds, link widths and topologies was observed.  All simulations were based on a k-ary n-cube 

interconnection network using wormhole routing.  Four applications from the SPLASH-2 suite were executed and 

their relative execution times measured.  Figure 8-(a) shows the results as the link speeds of an 8x8 mesh with 16-

bit wide links were varied from 100, 200 and 400 MHz, with a router delay of 40ns.  Figure 8-(b) presents the 

execution times for the same network, fixed at a link speed of 200 MHZ, as the link widths were varied between 

8,16 and 32 bits. Finally, Figure 8-(c) lists the execution speeds as the topology of the machine is changed from 2D 

(8-ary 2-cube), 3D (4-ary 2-cube) and 6D (2-ary 6-cube) under a constant bisection bandwidth constraint [7]. From 

these results, several observations were made. Better performance was achieved by increasing the link speed 

instead of the link width. Increasing the dimension of a network under a constant link width constraint was 

somewhat beneficial. Increasing the dimension of a network under constant bisection bandwidth (with decreasing 

link width) was detrimental to performance, showing that a 2-D mesh was optimal in this case. Routing delays play 

an important factor in the design of other network components, while reducing network contention experienced by 

short messages was crucial to overall performance.  

 

   2.2.2 Highlight of Other Tightly Coupled DSM Machines 

The MIT Alewife [18] is another DSM that uses a 2D-mesh topology, implemented as a wormhole routed, 

direct network. It also uses a special chip to coordinate a node's processor, memory and network interface. The 

Sequent STiNG is composed of 4-processor nodes linked together by a single unidirectional Scalable Coherent 

Interface ring[19], that provides a low-latency interconnection network with enough bandwidth for future growth. 

The NUMAchine [20] created by the University of Toronto, uses a hierarchical 3-level unidirectional ring structure 

to implement a 64-processor DSM with a connection bandwidth of 400MB/s at any point in the network. Both the 

NUMAchine and STiNG designs attempt to use as many commercial, off-the-shelf components as possible to 

reduce production costs, although integration of components from different manufacturers also required significant 

effort.  Recently, a DSM based on a bi-directional ring has been proposed to improve performance over 

unidirectional ring designs [21].  

 

3. Loosely Coupled Machines  
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Although tightly coupled DSMs generally provide high performance for parallel applications, they are also 

restricted by their prohibitively high cost, need for custom designed hardware, and requirement that they be 

physically integrated. In an attempt to overcome these deficits, there have been several efforts to create loosely 

coupled DSMs with adequate levels of performance. These networks tend to be comprised of collections of 

individual commercial workstations or personal computers connected using commercially available networks.  

   3.1 TreadMarks System 

TreadMarks [22] is a software DSM system designed to run on commonly available Unix systems. It was 

initially implemented on the DEC Ultrix operating system using 8 DECStation-5000/240 workstations.  These 

workstations were connected by both a 100Mbps point-to-point ATM [13] LAN and by a 10Mbps Ethernet [13] 

LAN to compare network performance.  Each machine has a Fore ATM interface that is connected to a Fore 

ATM switch. The connection between the interface and the switch operates at 100-Mbps, and the switch has an 

aggregate throughput of 1.2-Gbps.  The interface board does programmed I/O into transmit and receive FIFO 

buffers, and requires fragmentation and reassembly of ATM cells by software. Interrupts are raised at the end of a 

complete message, or when a FIFO buffer becomes full. TreadMarks was also implemented on the SunOS 

operating system using SPARCstation-1 and -2's connected by a 10-Mbps Ethernet LAN to ensure usability on 

different UNIX systems. Overall, the TreadMarks system features many of the advantages that can be obtained 

through the use of loosely coupled systems instead of tightly coupled ones.  

   3.1.1 Implementation Details for TreadMarks 

The implementation of TreadMarks is done at the user level of the UNIX operating system, so that no 

modifications to the system kernel are necessary.  There is no reliance on any particular compiler for implementation 

on a compatible operating system. TreadMarks is used as a user-level library linked in with shared memory 

applications, and makes use of conventional Unix socket, memory and signal handling interfaces to implement 

communication and memory management.  Interprocessor communication between workstations in TreadMarks is 

accomplished through the UDP/IP[13] protocol on an Ethernet or ATM LAN, or through the AAL3/4 protocol on 

the ATM LAN.  AAL3/4 is a connection-oriented, unreliable message protocol specified by the ATM standard. 

Since neither of these protocols guarantees reliable delivery, TreadMarks uses operation-specific, user-level 

protocols on top of UDP/IP and AAL3/4 to insure delivery.  Since TreadMarks was designed for use over 

commodity networks that generally have higher latency and lower bandwidth than specially designed interconnection 

networks, its design attempts to reduce the amount of communication necessary to maintain shared-memory 

consistency. Towards this end, it presents a release consistency model [23] to the user, which requires less 

communication than conventional sequentially consistent shared-memory, but provides a very similar programming 

interface. TreadMarks uses a lazy version of this model to further reduce the number of messages and amount of 



 13

data sent compared to eager implementations, which are more commonly found on hardware DSMs. The use of a 

multiple-writer protocol is also supported, to reduce communication due to false-sharing of cache blocks between 

processors. False-sharing happens when processors modify different addresses inside of the same cache block and 

the cache-coherence protocol falsely assumes that the entire block needs to be updated each time across the DSM.   

 

   3.1.2 Evaluation of TreadMarks Performance 

The basic communication costs of TreadMarks are significantly higher than a typical hardware DSM. The 

minimum roundtrip time for the smallest possible message was found to be around 500 µs when using explicit send 

and receive operations, while this increased to 670 µs when using signal handling interrupts. The Origin, on the other 

hand, shows an average roundtrip time of 775 ns for an 8-processor system. Similarly, other communication 

operations used in a DSM for shared memory exchanges and to maintain cache-coherence are more expensive on 

TreadMarks by several orders of magnitude compared to tightly coupled architectures.  To evaluate the 

effectiveness of TreadMarks, several applications from the SPLASH benchmark suite were used, including 

Water(modified), Jacobi, TSP, Quicksort and ILlink. Figure 9 shows the speedups obtained on these programs with 

TreadMarks implemented over the ATM LAN using the AAL 3/4 protocol. Overall, good speedups were achieved 

on these benchmarks, except in the case of Water, which requires a great deal of communication.  Further 

investigation into the execution characteristics of these applications reveals the disadvantages of the TreadMarks 

software DSM system.  

In order to achieve good performance with a system such as TreadMarks, the amount and frequency of 

communication must be minimized. Other than Water, the applications chosen[22] exhibit very low communication to 

computation ratios during their execution. Even Water achieves a decent speedup only because the authors 

implemented a modified version with relaxed consistency models that reduces the volume of communication 
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significantly compared to the standard implementation of this benchmark.  Since most real shared-memory 

applications tend to be communication intensive, Water was selected to examine the performance difference when 

three different communication substrates were used. Figure 10 shows Water's execution time breakdown according 

to computation, Unix overhead, TreadMark overhead and idle times when run over ATM, using both the standard 

UDP/IP protocol and AAL3/4 protocol, and also over standard 10-Mbps Ethernet using the UDP/IP protocol. 

Computation time refers to the time spent actually executing code, while idle time refers to the time wasted waiting 

for communication to complete across the network. Similarly, Unix time is the time spent executing kernel and 

library code and TreadMarks time is the time spent executing the TreadMarks library code.  From the figure, it can 

be seen that the AAL3/4 protocol over ATM performs best. The computation and TreadMarks overhead times 

remain constant across the three platforms, while the Unix overhead increases slightly due to increasing cost of the 

Unix kernel and library code execution for the different communication protocols. The increasing idle time from the 

AAL3/4 to the UDP/IP protocols over ATM corresponds to the increased protocol overhead in processing the 

network packets, while the large increase shown on Ethernet is due to network saturation.    

   3.1.3 Comparison between TreadMarks and a Tightly Coupled DSM 

To better gauge the difference between the TreadMarks implementation on a loosely coupled architecture and a 

tightly coupled architecture, the same benchmarks were also run on an SGI 4D/480 multiprocessor [24]. This is an 

8-processor shared memory machine that uses the same 40MHz MIPS R3000 processors that were used in the 

workstation cluster mentioned previously. Since the processor and memory hierarchies are the same on both the 

TreadMarks cluster of workstations and the SGI machine, this allowed the authors to compare the difference in their 

communication mechanisms.  Their results showed that for the four benchmarks with low communication to 

computation ratios, the performance of TreadMarks was fairly close to that of the SGI machine. For Water, the 

differences in performance were drastic, since this application uses a great deal of communication, even in its 

optimized version.  For communication intensive applications, the hardware DSM clearly performed better due to its 

dedicated, high-performance network.  To try and reduce unnecessary software overhead, the TreadMarks library 

was given a kernel-level implementation.  With some of the software overheads minimized, speedups for Water 

went from 3.96 in the user-level implementation to 5.6 in the kernel level implementation, while the SGI still had a 

speedup of 7.17.  Moving the communication layer of TreadMarks closer to the hardware level showed a good level 

of improvement in its performance as a DSM.  

For parallel applications exhibiting a small communication to computation ratio, TreadMarks provides very good 

speedup at a much lower cost than a tightly coupled DSM, with the help of a high-performance commodity network. 

It is easily implemented on top of existing Unix Workstations, and its programming environment is almost identical to 

typical shared-memory environments, making TreadMarks relatively easy to use.  Unfortunately, it still performs 
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worse on communication intensive applications for several reasons. Many of the less expensive commodity 

networks provide much worse throughput and higher latencies than interconnection networks designed for use in a 

hardware DSM. Also, the overhead required by the software communication layer in TreadMarks is still very 

expensive. Lower overhead user-level communication interfaces on workstation platforms, or kernel level 

implementations of the communication protocols are required to improve performance.  The TreadMarks system is a 

step in the right direction for loosely coupled DSM architectures, providing low-cost parallel performance while 

sacrificing communication speed.   

   3.2 The Brazos System 

Another promising system for implementing a shared memory multiprocessor using clusters of workstations can 

be found in the Brazos system [25].  Brazos is similar to TreadMarks, but has several key differences.  It also is a 

software DSM system, but is designed to run on x86 multiprocessor workstations using Windows NT 4x. It has been 

implemented on a cluster of four Compaq Proliant 1500 servers connected by a 100Mbps Ethernet LAN. Each 

Proliant machine has two 200 MHz Pentium Pro processors with 192MB of main memory.  Brazos makes use of 

selective multicast, multithreading, a software-only implementation of scope consistency and several adaptive 

runtime performance tuning mechanisms. Each of these features helps Brazos approach the performance of a 

tightly coupled DSM. 

    3.2.1 Brazos Implementation Details 

The decision to design Brazos for the x86 architecture was made for a few reasons.  Recent improvements in 

commodity networks and processors have made networks of multiprocessor PC workstations an inexpensive 

alternative to traditional tightly coupled DSM multiprocessors. The Windows NT operating system natively supports 

true preemptive multithreading, includes the TCP/IP transport protocol with multicast support, and is compatible with 

symmetric multiprocessor machines, such as the Compaq Proliant 1500. Brazos was designed as a multithreaded 

system, allowing the overlap of computation with the long communication latencies typically associated with 

software DSM systems. Multithreaded user-code execution is also supported, lettings programs take advantage of 

the tightly-coupled shared memory available on the local multiprocessor PC machine while transparently interacting 

with remote virtually shared memory on the other servers in the cluster.  Just like any other DSM implementation, 

Brazos relies on its interconnection network for performance, and employs its own optimizations to reduce 

communication delays. Brazos was designed for a time-multiplexed network environment with fast, multicast 

support, such as Ethernet. By specifying multiple recipients for each message, a large reduction in the number of 

messages sent and data transferred to maintain cache coherence can be achieved. Brazos also makes use of the 

scope consistency shared memory model, which attempts to further reduce the amount of coherence traffic seen 

compared to other models such as release consistency.  
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   3.2.2 Performance Comparison Between Brazos and TreadMarks 

To compare the effectiveness of these Brazos design decisions, it was compared against the TreadMarks 

system using the same applications mentioned previously [25].  TreadMarks was run on both a Solaris Unix system 

and was also ported to Windows NT. Both versions of TreadMarks and Brazos were used on the 8-processor 

Compaq Proliant cluster discussed for the benchmark applications. Figure 11 shows the relative speedups for the 3 

platforms, where TMK-SOL is TreadMarks on the Solaris system, and TMK-NT is the Windows NT port of 

TreadMarks. It should be noted that speedup is measured relative to the uniprocessor case for each platform, and 

that results from different platforms can not be related directly.  The results showed that the Windows NT TCP/IP 

calls generally involved more operating system overhead than on Unix systems, due to the Windows API for 

network functions.  In general, Brazos' use of multithreading and selective multicast operations allows it to 

outperform TreadMarks despite its implementation atop an operating system with less efficient network system 

calls. In a similar study, it was also shown that integrating the use of multithreading and multicast operations into the 

TreadMarks system improved its performance by an average of 20%, illustrating the effectiveness of these 

techniques in a software DSM design [26].  

 

4. Conclusion 

In the near future, the complexity of computer simulations will grow to demand more powerful platforms for 

them to run on. Distributed shared memory style parallel machines have developed a considerable amount of raw 

processing power compared to uniprocessor machines, and have the advantage of providing a similar programming 

environment to ease the development of parallel software. Tightly coupled architectures show several performance 
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advantages due to their custom, high-speed interconnection networks.  Both software and hardware optimizations 

exist to maximize the benefit from such a network, and reduce overall system latency.  However, the high 

performance of tightly coupled architectures comes at the cost of increased development time and high financial 

expense. In an attempt to leverage existing technology and reduce hardware costs, loosely coupled architectures 

have gained some popularity. These software-coordinated DSM machines make use of much less expensive 

clusters of workstations connected through a sufficiently fast commercial networking technology, such as Ethernet 

or ATM. They offer parallel performance at a fraction of the cost that tightly coupled architectures can incur.  

Unfortunately, even by using several high-speed commercial components, their lack of tight integration is reflected 

by their poor overall performance on communication intensive parallel applications.  Some optimizations have been 

implemented to try and bridge the gap between the two extreme ends of the DSM spectrum, and the future 

promises better, cheaper parallel performance as a result.  
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